Protozoan predation enhances stress resistance and antibiotic tolerance in Burkholderia cenocepacia by triggering the SOS response

  1. Morón García, Álvaro 12
  2. Tarhouchi, Alaa E 12
  3. Belinchón Esteban, Iván 12
  4. Valenzuela, Juan M 12
  5. Francisco Martínez, Patricia de 12
  6. Martín González, Ana 12
  7. Amaro Torres, Francisco 12
  1. 1 Department of Genetics , Physiology and Microbiology. Faculty of Biological Sciences, Madrid 28040 , Spain
  2. 2 Complutense University of Madrid , Physiology and Microbiology. Faculty of Biological Sciences, Madrid 28040 , Spain
Revista:
The ISME Journal

ISSN: 1751-7362 1751-7370

Año de publicación: 2024

Volumen: 18

Número: 1

Tipo: Artículo

DOI: 10.1093/ISMEJO/WRAE014 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: The ISME Journal

Resumen

Bacterivorous protists are thought to serve as training grounds for bacterial pathogens by subjecting them to the same hostile conditions that they will encounter in the human host. Bacteria that survive intracellular digestion exhibit enhanced virulence and stress resistance after successful passage through protozoa but the underlying mechanisms are unknown. Here we show that the opportunistic pathogen Burkholderia cenocepacia survives phagocytosis by ciliates found in domestic and hospital sink drains, and viable bacteria are expelled packaged in respirable membrane vesicles with enhanced resistance to oxidative stress, desiccation, and antibiotics, thereby contributing to pathogen dissemination in the environment. Reactive oxygen species generated within the protozoan phagosome promote the formation of persisters tolerant to ciprofloxacin by activating the bacterial SOS response. In addition, we show that genes encoding antioxidant enzymes are upregulated during passage through ciliates increasing bacterial resistance to oxidative radicals. We prove that suppression of the SOS response impairs bacterial intracellular survival and persister formation within protists. This study highlights the significance of protozoan food vacuoles as niches that foster bacterial adaptation in natural and built environments and suggests that persister switch within phagosomes may be a widespread phenomenon in bacteria surviving intracellular digestion.

Información de financiación

Financiadores

Referencias bibliográficas

  • Tsao, (2019), Water Res, 159, pp. 464, 10.1016/j.watres.2019.04.028
  • Pernthaler, (2005), Nat Rev Microbiol, 3, pp. 537, 10.1038/nrmicro1180
  • Greub, (2004), Clin Microbiol Rev, 17, pp. 413, 10.1128/CMR.17.2.413-433.2004
  • Brown, (1999), Trends Microbiol, 7, pp. 46, 10.1016/S0966-842X(98)01425-5
  • Sivaloganathan, (2021), Annu Rev Chem Biomol Eng, 12, pp. 309, 10.1146/annurev-chembioeng-090920-015024
  • Lardy, (2005), Biochim Biophys Acta Mol Cell Res, 1744, pp. 199, 10.1016/j.bbamcr.2005.02.004
  • Amaro, (2021), Int Microbiol, 24, pp. 559, 10.1007/s10123-021-00192-y
  • Davies, (1991), J Gen Microbiol, 137, pp. 705, 10.1099/00221287-137-3-705
  • Matz, (2005), Trends Microbiol, 13, pp. 302, 10.1016/j.tim.2005.05.009
  • Van Der Henst, (2016), ISME J, 10, pp. 897, 10.1038/ismej.2015.165
  • Rowbotham, (1980), J Clin Pathol, 33, pp. 1179, 10.1136/jcp.33.12.1179
  • Berk, (1998), Appl Environ Microbiol, 64, pp. 279, 10.1128/AEM.64.1.279-286.1998
  • Faulkner, (2008), J Bacteriol, 190, pp. 7728, 10.1128/JB.00751-08
  • Denoncourt, (2014), Front Microbiol, 5, pp. 240, 10.3389/fmicb.2014.00240
  • Espinoza-Vergara, (2019), Nat Microbiol, 4, pp. 2466, 10.1038/s41564-019-0563-x
  • Brandl, (2005), Appl Environ Microbiol, 71, pp. 1562, 10.1128/AEM.71.3.1562-1569.2005
  • Koubar, (2011), FEMS Microbiol Lett, 325, pp. 10, 10.1111/j.1574-6968.2011.02402.x
  • Berk, (2008), Appl Environ Microbiol, 74, pp. 2187, 10.1128/AEM.01214-07
  • Mahenthiralingam, (2005), Nat Rev Microbiol, 3, pp. 144, 10.1038/nrmicro1085
  • Tavares, (2020), Clin Microbiol Rev, 33, pp. e00139, 10.1128/CMR.00139-19
  • Bressler, (2007), Infect Control Hosp Epidemiol, 28, pp. 951, 10.1086/519177
  • Hassan, (2020), Front Microbiol, 11, 10.3389/fmicb.2020.574626
  • Bodilis, (2018), Front Microbiol, 9, pp. 383, 10.3389/fmicb.2018.00383
  • LiPuma, (2002), Lancet, 359, pp. 2002, 10.1016/S0140-6736(02)08836-0
  • Baldwin, (2007), Emerg Infect Dis, 13, pp. 458, 10.3201/eid1303.060403
  • Lamothe, (2007), Cell Microbiol, 9, pp. 40, 10.1111/j.1462-5822.2006.00766.x
  • Sajjan, (2006), Cell Microbiol, 8, pp. 1456, 10.1111/j.1462-5822.2006.00724.x
  • Cardona, (2005), FEMS Microbiol Lett, 250, pp. 97, 10.1016/j.femsle.2005.06.050
  • Lamothe, (2004), Cell Microbiol, 6, pp. 1127, 10.1111/j.1462-5822.2004.00424.x
  • Marolda, (1999), Microbiology, 145, pp. 1509, 10.1099/13500872-145-7-1509
  • Fisher, (2017), Nat Rev Microbiol, 15, pp. 453, 10.1038/nrmicro.2017.42
  • Balaban, (2004), Science, 305, pp. 1622, 10.1126/science.1099390
  • Personnic, (2023), Front Cell Infect Microbiol, 13, pp. 1141868, 10.3389/fcimb.2023.1141868
  • Personnic, (2019), Nat Commun, 10, pp. 5216, 10.1038/s41467-019-13021-8
  • Conlon, (2016), Nat Microbiol, 1, pp. 16051, 10.1038/nmicrobiol.2016.51
  • Rowe, (2019), Nat Microbiol, 5, pp. 282, 10.1038/s41564-019-0627-y
  • Buhse, (1988), Trans Am Microsc Soc, 107, 10.2307/3226333
  • Fenchel, (1980), Microb Ecol, 6, pp. 13, 10.1007/BF02020371
  • Schneider, (2012), Nat Methods, 9, pp. 671, 10.1038/nmeth.2089
  • Bernstein, (2002), Proc Natl Acad Sci USA, 99, pp. 9697, 10.1073/pnas.112318199
  • Schmittgen, (2008), Nat Protoc, 3, pp. 1101, 10.1038/nprot.2008.73
  • Luidalepp, (2011), J Bacteriol, 193, pp. 3598, 10.1128/JB.00085-11
  • Orman, (2013), Antimicrob Agents Chemother, 57, pp. 4398, 10.1128/AAC.00372-13
  • Amato, (2014), Front Microbiol, 5, pp. 70, 10.3389/fmicb.2014.00070
  • Mok, (2015), MBio, 6, pp. e01588, 10.1128/mBio.01588-15
  • Mok, (2018), Proc Natl Acad Sci USA, 115, pp. 6301, 10.1073/pnas.1804218115
  • Narayanaswamy, (2017), PLoS One, 12, pp. e0179776, 10.1371/journal.pone.0179776
  • El Chakhtoura, (2017), Clin Infect Dis, 65, pp. 1327, 10.1093/cid/cix559
  • Dörr, (2010), PLoS Biol, 8, 10.1371/journal.pbio.1000317
  • Baharoglu, (2014), FEMS Microbiol Rev, 38, pp. 1126, 10.1111/1574-6976.12077
  • Guerin, (2009), Science, 324, pp. 1034, 10.1126/science.1172914
  • Espinoza-Vergara, (2020), Front Microbiol, 11, pp. 17, 10.3389/fmicb.2020.00017
  • Maisonneuve, (2014), Cell, 157, pp. 539, 10.1016/j.cell.2014.02.050
  • Eisenreich, (2021), Front Cell Infect Microbiol, 10, 10.3389/fcimb.2020.615450
  • Ronneau, (2023), Cell Host Microbe, 31, pp. 993, 10.1016/j.chom.2023.05.002
  • Morón, Book of Abstracts of the XXIX Congress of the Spanish Society for Microbiology
  • Helaine, (2014), Science, 343, pp. 204, 10.1126/science.1244705
  • Liu, (2016), J Exp Med, 213, pp. 809, 10.1084/jem.20151248
  • Segal, (2003), Infect Immun, 71, pp. 205, 10.1128/IAI.71.1.205-210.2003
  • Pontes, (2019), Sci Signal, 12, pp. eaax3938, 10.1126/scisignal.aax3938
  • Tsai, (2019), Trends Microbiol, 27, pp. 508, 10.1016/j.tim.2019.01.004
  • Personnic, (2021), ISME J, 15, pp. 196, 10.1038/s41396-020-00774-0
  • Völzing, (2015), MBio, 6, pp. e00731, 10.1128/mBio.00731-15
  • Miller, (2004), Science, 305, pp. 1629, 10.1126/science.1101630
  • Peyrusson, (2020), Nat Commun, 11, pp. 2200, 10.1038/s41467-020-15966-7
  • Samuels, (2019), Infect Immun, 87, pp. e00711, 10.1128/IAI.00711-18
  • Rahman, (2022), ISME J, 16, pp. 1993, 10.1038/s41396-022-01249-0
  • Aijaz, (2017), FEMS Microbiol Ecol, 93, pp. 720, 10.1093/femsec/fix030
  • Matsuo, (2010), Microbiol Immunol, 54, pp. 63, 10.1111/j.1348-0421.2009.00182.x
  • Matsushita, (2018), Microbiol Immunol, 62, pp. 720, 10.1111/1348-0421.12656
  • McCuddin, (2006), Vet Microbiol, 114, pp. 275, 10.1016/j.vetmic.2005.12.004
  • Schlimme, (1997), FEMS Microbiol Ecol, 23, pp. 239, 10.1111/j.1574-6941.1997.tb00406.x