Efecto de la radiación láser de baja energía en la velocidad del movimiento dentario y en los niveles de Rankl y OPG en pacientes con tratamiento ortodóncico.

  1. A. Domínguez Martín 1
  2. C. Gómez Hernández 2
  3. Juan Carlos Palma Fernández 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  2. 2 Instituto de Química Física Rocasolano
    info

    Instituto de Química Física Rocasolano

    Madrid, España

    ROR https://ror.org/03xk60j79

Journal:
Ortodoncia española: Boletín de la Sociedad Española de Ortodoncia

ISSN: 0210-1637

Year of publication: 2024

Volume: 62

Issue: 2

Pages: 53-63

Type: Article

More publications in: Ortodoncia española: Boletín de la Sociedad Española de Ortodoncia

Abstract

OBJECTIVE: To evaluate tooth movement, receptor activator of nuclear factor KB ligand (RANKL), osteoprotegerin (OPG) and RANKL/OPG ratio in gingival crevicular fluid (GCF) in compression side during initial orthodontic tooth treatment to determine the efficacy of low-level laser therapy (LLLT). MATERIALS AND METHODS: Ten volunteers who required orthodontic treatment involving extraction of maxillary second premolars were selected. The orthodontic treatment was carried out by fixed multibracket appliances and Nance button as anchorage. For each patient, the upper first premolar of the quadrant 1 was chosen to be irradiated with a laser diode at 670 nm, 200 mW applied on the distal, buccal and lingual sides during 9 min on days 0, 1, 2, 3, 4 and 7. The same procedure was applied in the first premolar of the contralateral quadrant inserting the tip but without laser emission. Samples of GCF from the compression side of the upper first premolars to distalize were collected at baseline and after 2, 7, 30, 45 days post-treatment for determination of RANKL and OPG by enzyme-linked immunosorbent assay (ELISA). In addition, tooth movement was assessed by scanning models. RESULTS: There was improvement in the parameters studied (tooth movement, levels of RANKL in GCF and RANKL/OPG ratio) in the laser group when compared to the control group, although differences were not statistically significant. The accumulated retraction of the upper premolar at 30 days was higher in the laser group, and this difference was statistically significant between groups. CONCLUSIONS: LLLT delivered in repeated dosis (6 times in the initial 2 weeks) leads to a slight increase in the rate of closure of the spaces of extractions during orthodontic treatment.

Bibliographic References

  • 1. ALCANTARA CC, GIGO-BENATO D, SALVINI TF, OLIVEIRA AL, ANDERS JJ, RUSSO TL. Effect of lowlevel la ser therapy (LLLT) on acute neural recovery and inflammation-related gene expression after crush injury in rat sciatic nerve. Lasers Surg Med 2013, 45(4):246-52. YAMAGUCHI M. RANK/RANKL/OPG during ortho-dontic tooth movement. Orthod. Craniofac Res 2009; 12:113-9. OBRADOVI´C RR, KESI´C LG, PESEVSKA S. Influence of low-level laser therapy on biomaterial osseoin tegration: a mini-review. Lasers Med. Sci. 2009; 24(3):447-51.
  • 2. BARBIERI G, SOLANO P, ALARCON JA, VERNAL R, RIOS-LUGO J, SANZ M, MARTÍN C. Biochemical markers of bone metabolism in gingival crevicular fluid du ring early orthodontic tooth movement. Angle Or thod 2013; 83(1): 63-9.
  • 3. BAUMRIND S. A reconsideration of the propriety of the “pressure-tension” hypothesis. Am. J. Orthod. (1969); 55(1):12-22.
  • 4. BURSTONE CJ. The biomechanics of tooth move ment. In: Kraus BS, Riedel RA, editors. Vistas in orthodontics. Philadelphia: Lae .t Febiger; 1962; p. 197-213.
  • 5. CEPERA F, TORRES FC, SCANAVINI MA, PARANHOS LR, CAPELOZZA FILHO L, CARDOSO MA, ET AL. Effect of a low-level laser on bone regeneration after rapid maxillary expansion. Am. J. Orthod. Dentofacial Orthop. 2012; 141(4):444-50.
  • 6. CHAPPLE ILC, LANDINI G, GRIFFITHS GS, PATEL NC, WARD RSN. Calibration of the Periotron 8000 ® and 6000 ® by polynomial regression. J. Periodontol. Res. 1999; 34 (2):79-86.
  • 7. FLÓREZ-MORENO GA, ISAZA-GUZMÁN DM, TOBÓN-ARROYAVE SI. Time-related changes in salivary le vels of the osteotropic factor sRANKL and OPG through orthodontic tooth movement. Am J Or thod Dentofacial Orthop 2013; 143 (1): 92-100.
  • 8. GARLET TP, COELHO U, SILVA JS, GARLET GP. Cytokine expression pattern in compression and tension si des of the periodontal ligament during orthodontic tooth movement in humans. Eur. J. Oral Sci. 2007; 115:355-362.
  • 9. GARLET TP, COELHO U, SILVA JS, GARLET GP. Cytokine expression pattern in compression and tension si des of the periodontal ligament during orthodontic tooth movement in humans. Eur. J. Oral Sci. 2007; 115 (5):355-62.
  • 10. GENC G, KOCADERELLI I, TASAR F, KILINC K, EL S, SARKA RATI B. Effect of low-level laser therapy (LLLT) on orthodontic tooth movement. Lasers Med Sci 2013; 28:41-47.
  • 11. HOFFMAN M, MONROE DM. Low intensity laser the rapy speeds wound healing in hemophilia by en hancing platelet procoagulant activity. Wound Re pair Regen. 2012; 20(5): 770-7.
  • 12. KATAGIRI T, TAKAHASHI N. Regulatory mechanism of osteoblast and osteoclast differentiation. Oral Dis 2002; 8 (3):147-59.
  • 13. KAWASAKI K, SHIMIZU N. Effects of lowenergy la ser irradiation on bone remodeling during experi mental tooth movement in rats. Lasers Surg Med 2000; 26:282-91.
  • 14. LIMPANICHKUL W, GODFREY K, SRISUK N, RATTANAYATIKUL C. Effects of low-level lasser therapy on the rate of orthodontic movement. Orthod. Craniofac. Res 2006; 9: 38-43.
  • 15. LOË H. The gingival index, the plaque index, and the retention index systems. J. Periodontol. 1967; 38:610-6.
  • 16. NISHIJIMA Y, YAMAGUCHI M, KOJIMA T, AIHARA N, NAKAJIMA R, KASAI K. Levels of RANKL and OPG in gingival crevicular fluid during orthodontic tooth movement and effect of compression force on re leases from periodontal ligament cells in vitro. Or thod. Craniofac. Res. 2006; 9 (2):63-70.
  • 17. REITAN K. Selecting forces in orthodontics. Eur. Or thod. Soc. Trans. 1956; 32:108-126. YOUSSEF M, ASHKAR S, HAMADE E, MIR M. The effect of low-level laser therapy during orthodontic mo vement: a preliminary study. Lasers Med. Sci. 2008; 23:27-33. 18. SAITO S, SHIMIZU N. Stimulatory effects of lowpower laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am. J. Orthod. Dentofacial Orthop. 1997; 111(5):525-32.
  • 19. SEIFI M, SHAFEEI HA, DANESHDOOST S, MIR M. Effects of two types of low-level laser wave lengths (850 and 630 nm) on the orthodontic tooth movements in rabbits. Lasers Med. Sci. 2007; 22:261-4.
  • 20. TORRI S, BLESSMANN WEBER JB. Influence of low-level laser therapy on the rate of the orthodontic movement: a literature review. Photomed. Laser Surg. 2013; 31(9):411-421.
  • 21. UEMATSU S, MOGI M, DEGUCHI T. Interleukin-1 beta, interleukin-6, tumor necrosis factor-alpha, epi dermal growth factor and beta-2 microglobulin le vels are elevated in gingival crevicular fluid during orthodontic tooth movement. J. Dent. Res. 1996; 75(1):562-7.
  • 22. WU ZH, ZHOU Y, CHEN JY, ZHOU LW. Mitochondrial signaling for histamine releases in laser-irradia ted RBL2H· mast cells. Lasers Surg. Med. 2010; 42(8):503-9.