Effects of Low-Load Blood Flow Restriction Training on Muscle Anabolism Biomarkers and Thrombotic Biomarkers Compared with Traditional Training in Healthy Adults Older Than 60 Years: Systematic Review and Meta-Analysis
- Fabero-Garrido, Raúl 2
- Gragera-Vela, Miguel 2
- del Corral, Tamara 23
- Hernández-Martín, Marta 1
- Plaza-Manzano, Gustavo 23
- López-de-Uralde-Villanueva, Ibai 23
- 1 Department of Nursing, Faculty of Nursing, Physiotherapy and Podiatry, Complutense University of Madrid, 28040 Madrid, Spain
- 2 Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, Complutense University of Madrid, 28040 Madrid, Spain
- 3 Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
ISSN: 2075-1729
Año de publicación: 2024
Volumen: 14
Número: 3
Páginas: 411
Tipo: Artículo
Otras publicaciones en: Life
Resumen
The aim of this meta-analysis was to determine the effects of low-load blood flow restriction training (LL-BFRT) on muscle anabolism and thrombotic biomarkers compared with the effects of traditional LL training and to analyse the changes in these biomarkers in the short and medium term (acute/immediate and after at least 4 weeks of the training programme, respectively). A search was conducted in the following electronic databases from inception to 1 March 2024: MEDLINE, CENTRAL, Web of Science, PEDro, Science Direct, CINHAL, and Scopus. A total of 13 randomized controlled trials were included, with a total of 256 healthy older adults (mean (min-max) age 68 (62-71) years, 44.53% female). The outcome measures were muscle anabolism biomarkers and thrombosis biomarkers. The standardized mean difference (SMD) was calculated to compare the outcomes reported by the studies. The overall meta-analysis showed that LL-BFRT produces a large increase in muscle anabolism biomarkers compared with traditional LL training (eight studies; SMD = 0.88 [0.39; 1.37]) and compared with a passive control (four studies; SMD = 0.91 [0.54; 1.29]). LL-BFRT does not produce an increase in thrombotic biomarkers compared with traditional LL training (four studies; SMD = -0.02 [-0.41; 0.36]) or compared with a passive control (two studies; SMD = 0.20 [-0.41; 0.80]). The increase in muscle anabolism biomarkers was large after applying a single session (four studies; SMD = 1.29 [0.18; 2.41]) and moderate after applying a training programme (four studies; SMD = 0.58 [0.09; 1.06]). In conclusion, LL-BFRT increases muscle anabolism biomarkers to a greater extent than traditional LL training (low-quality evidence) or a passive control (moderate-quality evidence) in healthy older adults. This superior anabolic potential of LL-BFRT compared with LL training is sustained in the short to medium term. LL-BFRT is a safe training methodology for older adults, showing moderate-quality evidence of no increase in thrombotic biomarkers compared with traditional LL training.
Referencias bibliográficas
- World Health Organization (2021). Ageing and Health, World Health Organization.
- Tieland, (2018), J. Cachexia Sarcopenia Muscle, 9, pp. 3, 10.1002/jcsm.12238
- Mitchell, (2012), Front. Physiol., 3, pp. 260, 10.3389/fphys.2012.00260
- Woo, (2017), Clin. Geriatr. Med., 33, pp. 305, 10.1016/j.cger.2017.02.003
- Koopman, (2009), J. Appl. Physiol., 106, pp. 2040, 10.1152/japplphysiol.91551.2008
- (1997), Am. J. Epidemiol., 145, pp. 970, 10.1093/oxfordjournals.aje.a009065
- Dao, (2020), Endocrinol. Metab., 35, pp. 716, 10.3803/EnM.2020.405
- Proctor, (2009), Med. Sci. Sports Exerc., 41, pp. 1510, 10.1249/MSS.0b013e3181a0c95c
- Ha, (2018), Exp. Gerontol., 114, pp. 13, 10.1016/j.exger.2018.10.012
- Bagheri, (2020), Exp. Gerontol., 133, pp. 110869, 10.1016/j.exger.2020.110869
- Harber, (2009), Am. J. Physiol. Regul. Integr. Comp. Physiol., 297, pp. R1452, 10.1152/ajpregu.00354.2009
- Lovell, (2010), J. Aging Phys. Act., 18, pp. 14, 10.1123/japa.18.1.14
- Papa, (2017), Clin. Interv. Aging, 12, pp. 955, 10.2147/CIA.S104674
- Grgic, (2020), Sports Med., 50, pp. 1983, 10.1007/s40279-020-01331-7
- Delaere, (2019), J. Nutr. Health Aging, 23, pp. 494, 10.1007/s12603-019-1196-8
- Frankel, (2006), Clin. Geriatr. Med., 22, pp. 239, 10.1016/j.cger.2005.12.002
- Nied, (2002), Am. Fam. Physician, 65, pp. 419
- Rodrigo-Mallorca, D., Loaiza-Betancur, A.F., Monteagudo, P., Blasco-Lafarga, C., and Chulvi-Medrano, I. (2021). Resistance Training with Blood Flow Restriction Compared to Traditional Resistance Training on Strength and Muscle Mass in Non-Active Older Adults: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health, 18.
- Centner, (2019), Sports Med., 49, pp. 95, 10.1007/s40279-018-0994-1
- Lorenz, (2021), J. Athl. Train., 56, pp. 937, 10.4085/418-20
- Amiri, (2021), Hormones, 20, pp. 247, 10.1007/s42000-020-00250-6
- Nascimento, (2019), Int. J. Gen. Med., 12, pp. 91, 10.2147/IJGM.S194883
- Loenneke, (2011), Scand. J. Med. Sci. Sports, 21, pp. 510, 10.1111/j.1600-0838.2010.01290.x
- Wilkerson, (2002), Semin. Thromb. Hemost., 28, pp. 555, 10.1055/s-2002-36700
- Moher, (2009), PLoS Med., 151, pp. 264
- Methley, A.M., Campbell, S., Chew-Graham, C., McNally, R., and Cheraghi-Sohi, S. (2014). PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv. Res., 14.
- Scherbov, S., and Sanderson, W. (2020). New Measures of Population Ageing. United Nations, 1–90. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/unpd_egm_201902_s1_sergeischerbov.pdf.
- Giovannini, (2008), Mech. Ageing Dev., 129, pp. 593, 10.1016/j.mad.2008.08.001
- Fragala, (2014), J. Cachexia Sarcopenia Muscle, 5, pp. 139, 10.1007/s13539-013-0120-z
- Haidet, (2009), Muscle Nerve, 39, pp. 283, 10.1002/mus.21244
- Gorog, (2022), Nat. Rev. Cardiol., 19, pp. 475, 10.1038/s41569-021-00665-7
- Chamberlain, (2017), JMIR Med. Inform., 5, pp. e33, 10.2196/medinform.7680
- Higgins, J., and Sally, G. (2012). Cochrane Handbook for Systematic Reviews of Interventions., The Cochrane Collaboration. Version 5.1.0.
- Maher, (2003), Phys. Ther., 83, pp. 713, 10.1093/ptj/83.8.713
- Bhogal, (2005), J. Clin. Epidemiol., 58, pp. 668, 10.1016/j.jclinepi.2005.01.002
- McHugh, (2012), Biochem. Med., 22, pp. 276, 10.11613/BM.2012.031
- Andrews, (2013), J. Clin. Epidemiol., 66, pp. 719, 10.1016/j.jclinepi.2012.03.013
- Knapp, (2003), Stat. Med., 22, pp. 2693, 10.1002/sim.1482
- Higgins, (2003), BMJ, 327, pp. 557, 10.1136/bmj.327.7414.557
- Bown, (2010), Eur. J. Vasc. Endovasc. Surg., 40, pp. 669, 10.1016/j.ejvs.2010.07.011
- IntHout, (2016), BMJ Open, 6, pp. e010247, 10.1136/bmjopen-2015-010247
- Veroniki, (2016), Res. Synth. Methods, 7, pp. 55, 10.1002/jrsm.1164
- Barendregt, (2018), Int. J. Evid. Based Health, 16, pp. 195, 10.1097/XEB.0000000000000141
- Duval, (2000), Biometrics, 56, pp. 455, 10.1111/j.0006-341X.2000.00455.x
- Fry, (2010), J. Appl. Physiol., 108, pp. 1199, 10.1152/japplphysiol.01266.2009
- Kargaran, (2021), Physiol. Behav., 239, pp. 113500, 10.1016/j.physbeh.2021.113500
- Shimizu, (2016), Eur. J. Appl. Physiol., 116, pp. 749, 10.1007/s00421-016-3328-8
- Yasuda, (2015), Springerplus, 4, pp. 348, 10.1186/s40064-015-1132-2
- Bigdeli, (2020), Arch. Gerontol. Geriatr., 90, pp. 104110, 10.1016/j.archger.2020.104110
- Yasuda, (2015), J. Gerontol. A Biol. Sci. Med. Sci., 70, pp. 950, 10.1093/gerona/glu084
- Patterson, (2013), Eur. J. Appl. Physiol., 113, pp. 713, 10.1007/s00421-012-2479-5
- Pazokian, (2022), Eur. Rev. Aging Phys. Act., 19, pp. 22, 10.1186/s11556-022-00303-2
- Lopes, (2022), Clin. Hemorheol. Microcirc., 82, pp. 13, 10.3233/CH-221395
- Ozaki, (2017), Clin. Physiol. Funct. Imaging, 37, pp. 379, 10.1111/cpf.12312
- Yasuda, (2016), Oncotarget, 7, pp. 33595, 10.18632/oncotarget.9564
- Yasuda, (2014), Scand. J. Med. Sci. Sports, 24, pp. 799, 10.1111/sms.12087
- Centner, (2019), J. Sports Sci. Med., 18, pp. 471
- Barcot, (2019), J. Clin. Epidemiol., 113, pp. 104, 10.1016/j.jclinepi.2019.05.012
- Marcotte, (2015), Calcif. Tissue Int., 96, pp. 196, 10.1007/s00223-014-9925-9
- Lim, (2022), Med. Sci. Sports Exerc., 54, pp. 1546, 10.1249/MSS.0000000000002929
- Takarada, (2000), J. Appl. Physiol., 88, pp. 61, 10.1152/jappl.2000.88.1.61
- Gharahdaghi, (2021), Front. Physiol., 11, pp. 621226, 10.3389/fphys.2020.621226
- Yinghao, (2021), J. Int. Med. Res., 49, pp. 030006052110395, 10.1177/03000605211039564
- Loenneke, (2010), Int. J. Sports Med., 31, pp. 1, 10.1055/s-0029-1239499
- Zhang, (2022), Front. Med., 9, pp. 894996, 10.3389/fmed.2022.894996
- Deschenes, (2010), Exp. Gerontol., 45, pp. 389, 10.1016/j.exger.2010.03.007
- Fujita, (2007), J. Appl. Physiol., 103, pp. 903, 10.1152/japplphysiol.00195.2007
- Yoshida, T., and Delafontaine, P. (2020). Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells, 9.
- Alonzi, (1997), J. Clin. Invest., 99, pp. 643, 10.1172/JCI119207
- Libardi, (2018), Int. J. Sports Med., 39, pp. 29, 10.1055/s-0043-119222
- Bhasin, (2009), J. Clin. Endocrinol. Metab., 94, pp. 4224, 10.1210/jc.2009-1434
- Minniti, (2020), Am. J. Sports Med., 48, pp. 1773, 10.1177/0363546519882652
- Nakajima, (2006), Int. J. KAATSU Train. Res., 2, pp. 5, 10.3806/ijktr.2.5
- Nakajima, (2007), Int. J. KAATSU Train. Res., 3, pp. 11, 10.3806/ijktr.3.11