Biocontrol Potential and Mitigation of Abiotic Stress Effects of Meyerozyma guilliermondii on Cucumber (Cucumis sativus L.)

  1. Gomez-Garay, Arancha 1
  2. Bonaventura Roca-Campos, Darío 1
  3. Irles Sánchez, Sofía 1
  4. Pintos López, Beatriz 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Revue:
Agriculture

ISSN: 2077-0472

Année de publication: 2024

Volumen: 14

Número: 7

Pages: 1189

Type: Article

DOI: 10.3390/AGRICULTURE14071189 GOOGLE SCHOLAR lock_openAccès ouvert editor

D'autres publications dans: Agriculture

Résumé

This study aims to evaluate the biocontrol potential of Meyerozyma guilliermondii (CECT13190), an endophytic yeast, and its role in mitigating the adverse effects of abiotic and biotic stress in cucumber plants. The relevance of this study lies in addressing the threat of Fusarium wilt, a major fungal disease that impacts cucumber crop productivity, as well as the exacerbation of food scarcity caused by climate change-induced abiotic stress factors such as high temperatures and drought. The study was conducted in a greenhouse environment where Cucumis sativus seedlings were exposed to biotic (F. oxysporum inoculation) and abiotic stress conditions (heat and water deficit). The impact of M. guilliermondii on treated plants’ physiology, growth, development, and flowering was assessed. The study confirmed the biocontrol activity of M. guilliermondii against F. oxysporum and highlighted its positive effects as a plant growth promoter. It enhanced overall plant health, activated natural defense mechanisms against F. oxysporum, and alleviated the detrimental impacts of abiotic stress. Notably, M. guilliermondii also induced early flowering in cucumber plants. This research underscores the potential of M. guilliermondii as a biocontrol agent for managing Fusarium wilt, enhancing stress tolerance, promoting early flowering, and offering promising prospects for sustainable crop production amidst fungal diseases and climate change-induced stressors. The findings emphasize the importance of utilizing M. guilliermondii to improve cucumber crop productivity and address food scarcity challenges.

Références bibliographiques

  • Paris, (2011), Ann. Bot., 109, pp. 117, 10.1093/aob/mcr281
  • (2024, July 12). FAOStat. Available online: https://www.fao.org/faostat/en/#home.
  • Wan, (2017), Biol. Control, 112, pp. 1, 10.1016/j.biocontrol.2017.05.014
  • Scarlett, (2013), Eur. J. Plant Pathol., 137, pp. 315, 10.1007/s10658-013-0244-1
  • Kim, (2015), J. Agric. Food Chem., 63, pp. 10380, 10.1021/acs.jafc.5b04068
  • Abro, (2019), cucumerinum causing wilt in cucumber. Plant Pathol. J., 35, pp. 598
  • Lan, (2023), Chin. J. Biol. Control, 39, pp. 184
  • Palmieri, D., Ianiri, G., Conte, T., Castoria, R., Lima, G., and De Curtis, F. (2022). Influence of Biocontrol and Integrated Strategies and Treatment Timing on Plum Brown Rot Incidence and Fungicide Residues in Fruits. Agriculture, 12.
  • Bita, C.E., and Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci., 4.
  • Ortiz, (2008), Genet. Resour. Crop Evol., 55, pp. 1095, 10.1007/s10722-008-9372-4
  • Caputo, (2004), Postharvest Biol. Technol., 34, pp. 179, 10.1016/j.postharvbio.2004.05.008
  • Liu, (2013), Int. J. Food Microbiol., 167, pp. 153, 10.1016/j.ijfoodmicro.2013.09.004
  • Nakayan, (2013), Plant Soil, 373, pp. 301, 10.1007/s11104-013-1792-z
  • Kthiri, Z., Jabeur, M.B., Chairi, F., López-Cristoffanini, C., López-Carbonell, M., Serret, M.D., Araus, J.L., Karmous, C., and Hamada, W. (2021). Exploring the potential of Meyerozyma guilliermondii on physiological performances and defense response against Fusarium crown rot on durum wheat. Pathogens, 10.
  • Arnold, (2003), Proc. Natl. Acad. Sci. USA, 100, pp. 15649, 10.1073/pnas.2533483100
  • Gouveia, (2020), Ecotoxicol. Environ. Saf., 202, pp. 110916, 10.1016/j.ecoenv.2020.110916
  • Sharma, (2020), J. Plant Growth Regul., 39, pp. 509, 10.1007/s00344-019-10018-x
  • Tello, (2019), Plant Dis., 103, pp. 2471, 10.1094/PDIS-01-19-0067-PDN
  • Alonso de Robador, J.M., Ortega Pérez, N., Sanchez-Ballesta, M.T., Tello Mariscal, M.L., Pintos López, B., and Gómez-Garay, A. (2023). Plant Defence Induction by Meyerozyma guilliermondii in Vitis vinifera L.. Agronomy, 13.
  • Meier, U. (1997). Growth Stages of Mono-and Dicotyledonous Plants, Blackwell Wissenschafts-Verlag.
  • Schindelin, (2012), Nat. Methods, 9, pp. 676, 10.1038/nmeth.2019
  • Monteoliva, M.I., Bustos, D.A., and Luna, C.M. (2019). Abordajes Fisiológicos para el Estudio del Estrés Abiótico en Plantas, Ediciones INTA. Disertaciones y protocolos.
  • Lamelas, (2021), Curr. Protoc., 44, pp. 1977
  • Wellburn, (1994), J. Plant Physiol., 144, pp. 307, 10.1016/S0176-1617(11)81192-2
  • Ezziyyani, (2004), Anales Biología, 26, pp. 69
  • Savary, (2019), Nat. Ecol. Evol., 3, pp. 430, 10.1038/s41559-018-0793-y
  • (2023), Plant Stress, 8, pp. 100156, 10.1016/j.stress.2023.100156
  • Agrios, G.N. (2005). Introduction to Plant Pathology, Elsevier Academic Press.
  • Fravel, (2005), Annu. Rev. Phytopathol., 43, pp. 337, 10.1146/annurev.phyto.43.032904.092924
  • Ongena, (2008), Trends Microbiol., 16, pp. 115, 10.1016/j.tim.2007.12.009
  • Chaudhry, (2022), Plant Cell Rep., 41, pp. 1, 10.1007/s00299-021-02759-5
  • Yin, (2013), Eur. J. Soil Biol., 59, pp. 36, 10.1016/j.ejsobi.2013.09.001
  • Dong, (2012), Plant Physiol. Biochem., 60, pp. 171, 10.1016/j.plaphy.2012.08.004
  • Rodriguez, (2009), New Phytol., 182, pp. 314, 10.1111/j.1469-8137.2009.02773.x
  • Mitter, B., Petric, A., Shin, M.W., Chain, P.S., Hauberg-Lotte, L., Reinhold-Hurek, B., and Sessitsch, A. (2013). Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front. Plant Sci., 4.
  • Takeno, (2016), J. Exp. Bot., 67, pp. 4925, 10.1093/jxb/erw272
  • Ausin, (2005), Int. J. Dev. Biol., 49, pp. 689, 10.1387/ijdb.052022ia
  • Kim, (2017), Biochem. Biophys. Res. Commun., 490, pp. 1162, 10.1016/j.bbrc.2017.06.169
  • Tao, (2018), New Phytol., 218, pp. 1534, 10.1111/nph.15039
  • Cho, (2017), Plant J., 90, pp. 708, 10.1111/tpj.13461
  • Waqas, (2012), Molecules, 17, pp. 10754, 10.3390/molecules170910754
  • Gechev, (2006), BioEssays, 28, pp. 1091, 10.1002/bies.20493
  • Mesa-Marín, J., Del-Saz, N.F., Rodríguez-Llorente, I.D., Redondo-Gómez, S., Pajuelo, E., Ribas-Carbó, M., and Mateos-Naranjo, E. (2018). PGPR Reduce Root Respiration and Oxidative Stress Enhancing Spartina maritima Root Growth and Heavy Metal Rhizoaccumulation. Front. Plant Sci., 9.
  • Oerke, (2006), J. Agric. Sci., 144, pp. 31, 10.1017/S0021859605005708
  • Young, (1991), Physiol. Plant., 83, pp. 702, 10.1111/j.1399-3054.1991.tb02490.x