La aplicación de datos masivos en economía de la energíauna revisión

  1. MIGUEL ÁNGEL RODRÍGUEZ LÓPEZ
  2. DIEGO RODRÍGUEZ RODRÍGUEZ
Revista:
Documentos de trabajo ( FEDEA )

ISSN: 1696-7496

Año de publicación: 2024

Número: 8

Páginas: 1-31

Tipo: Documento de Trabajo

Otras publicaciones en: Documentos de trabajo ( FEDEA )

Referencias bibliográficas

  • Abuljadail, M., Khalil, A., Talwar, S., Kaur, P., 2023. Big Data Analytics and E-Governance: Actors, Opportunities, Tensions, and Applications. Technological Forecasting and Social Change. 193, 122612. https://doi.org/10.1016/j.techfore.2023.122612.
  • Afzal, M., Li, J., Amin, W., Huang, Q., Umer, K., Ahmad, S. A., Ahmad, F., Raza, A., 2022. Role of Blockchain Technology in Transactive Energy Market: A Review. Sustainable Energy Technologies and Assessments. 53, 102646. https://doi.org/10.1016/j.seta.2022.102646.
  • Ahmad, T., Madonski, R., Zhang, D., Huang, C., Mujeeb, A., 2022. Data-Driven Probabilistic Machine Learning in Sustainable Smart Energy/Smart Energy Systems: Key Developments, Challenges, and Future Research Opportunities in the Context of Smart Grid Paradigm. Renewable and Sustainable Energy Reviews. 160, 112128. https://doi.org/10.1016/j.rser.2022.112128.
  • Ahmed, R., Sreeram, V., Mishra, Y., Arif, M. D., 2020. A Review and Evaluation of the State-of-the-Art in PV Solar Power Forecasting: Techniques and Optimization. Renewable and Sustainable Energy Reviews. 124, 109792. https://doi.org/10.1016/j.rser.2020.109792.
  • Akachukwu, C.M., Aibinu, A.M., Nwohu, M.N., Salau, H.B., 2014. A Decade Survey of Engineering Applications of Genetic Algorithm in Power System Optimization. 5th International Conference on Intelligent Systems, Modelling and Simulation, Langkawi, Malaysia. 38-42. https://doi.org/10.1109/ISMS.2014.15.
  • Alloghani, M., Al-Jumeily, D., Mustafina, J., Hussain, A., Aljaaf, A.J., 2020. A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science, en: Berry, M., Mohamed, A., Yap, B. (eds) Supervised and Unsupervised Learning for Data Science. Unsupervised and Semi-Supervised Learning. Springer, Cham. https://doi.org/10.1007/978-3-030-22475-2_1.
  • Alsharif, A., Tan, C. W., Ayop, R., Dobi, A., Lau, K. Y., 2021. A Comprehensive Review of Energy Management Strategy in Vehicle-to-Grid Technology Integrated with Renewable Energy Sources. Sustainable Energy Technologies and Assessments. 47, 101439. https://doi.org/10.1016/j.seta.2021.101439.
  • Anagnostis, A., Papageorgiou, E., Bochtis, D., 2020. Application of Artificial Neural Networks for Natural Gas Consumption Forecasting. Sustainability. 12, 6409. https://doi.org/10.3390/su12166409.
  • Aydinalp-Koksal, M., Ugursal, V.I., 2008. Comparison of Neural Network, Conditional Demand Analysis, and Engineering Approaches for Modeling End-use Energy Consumption in the Residential Sector. Appl.Energy. 85(4), 271-296. https://doi.org/10.1016/j.apenergy.2006.09.012.
  • Ba, Z., Ma, Y., Cai, J., Li, G., 2023. A Citation-Based Research Framework for Exploring Policy Diffusion: Evidence from China's New Energy Policies. Technological Forecasting and Social Change. 188, 122273. https://doi.org/10.1016/j.techfore.2022.122273.
  • Balal, A., Pakzad, Y.J., Demir, A., Igene, M., Giesselmann, M., Bayne, S., 2023. Forecasting Solar Power Generation Utilizing Machine Learning Models in Lubbock. Emerging Science Journal. 7(4). https://doi.org/ 10.28991/ESJ-2023-07-04-02.
  • Baños, R., Manzano-Agugliaro, F., Montoya, F.G., Gil, C., Alcayde, A., Gómez, J., 2011. Optimization Methods Applied to Renewable and Sustainable Energy: A Review. Renewable and Sustainable Energy Reviews. 15(4), 1753-1766. https://doi.org/10.1016/j.rser.2010.12.008.
  • Bennagi, A., AlHousrya, O., Cotfas, D. T., Cotfas, P. A., 2024. Comprehensive Study of the Artificial Intelligence Applied in Renewable Energy. Energy Strategy Reviews. 54, 101446. https://doi.org/10.1016/j.esr.2024.101446.
  • Bianchini, S., Damioli, G., Ghisetti, C., 2023. The environmental effects of the “twin” green and digital transition in European regions. Environ Resource Econ 84, 877–918. https://doi.org/10.1007/s10640-022-00741-7.
  • Bloess, A., Schill, W., Zerrahn, A., 2018. Power-to-Heat for Renewable Energy Integration: A Review of Technologies, Modeling Approaches, and Flexibility Potentials. Appl.Energy. 212, 1611-1626. https://doi.org/10.1016/j.apenergy.2017.12.073.
  • BNEF, 2024. 2H 2023 LCOE Update: An Uneven Recovery. https://about.bnef.com/blog/2h-2023-lcoe-update-anuneven- recovery/.
  • Böcking, L., Michaelis, A., Schäfermeier, B., Baier, A., Kühl, N., Körner, M.F., Nolting, L., 2024. Generative Artificial Intelligence in the Energy Sector. Fraunhofer FIT, Fraunhofer IEE and TenneT TSO GmbH. Bayreuth. https://doi.org/10.15495/EPub_UBT_00007674.
  • Borunda, M., Jaramillo, O. A., Reyes, A., Ibargüengoytia, P. H., 2016. Bayesian Networks in Renewable Energy Systems: A Bibliographical Survey. Renewable and Sustainable Energy Reviews. 62, 32-45. https://doi.org/10.1016/j.rser.2016.04.030.
  • Bourdeau, M., Zhai, X. q., Nefzaoui, E., Guo, X., Chatellier, P., 2019. Modeling and Forecasting Building Energy Consumption: A Review of Data-Driven Techniques. Sustainable Cities and Society. 48, 101533. https://doi.org/10.1016/j.scs.2019.101533.
  • Buratti, C., Barbanera, M., Palladino, D., 2014. An Original Tool for Checking Energy Performance and Certification of Buildings by Means of Artificial Neural Networks. Appl.Energy. 120, 125-132. https://doi.org/10.1016/j.apenergy.2014.01.053.
  • Canizes, B., Soares, J., Faria, P., Vale, Z., 2013. Mixed Integer Non-Linear Programming and Artificial Neural Network Based Approach to Ancillary Services Dispatch in Competitive Electricity Markets. Appl.Energy. 108, 261-270. https://doi.org/10.1016/j.apenergy.2013.03.031.
  • de Hoog, J., Maetschke, S., Ilfrich, P, Kolluri, R.R., 2020. Using satellite and aerial imagery for identification of solar PV: state of the art and research opportunities. e-Energy '20: Proceedings of the Eleventh ACM International Conference on Future Energy Systems. 308-313. https://doi.org/10.1145/3396851.3397681.
  • Dong, B., Cao, C., Lee, S. E., 2005. Applying Support Vector Machines to Predict Building Energy Consumption in Tropical Region. Energy Build. 37(5), 545-553. https://doi.org/10.1016/j.enbuild.2004.09.009.
  • Duman, A. C., Gönül, Ö, Erden, H. S., Güler, Ö., 2023. Survey- and Simulation-Based Analysis of Residential Demand Response: Appliance use Behavior, Electricity Tariffs, Home Energy Management Systems. Sustainable Cities and Society. 96, 104628. https://doi.org/10.1016/j.scs.2023.104628.
  • Ehteram, M., Banadkooki, F. B., Fai, C. M., Moslemzadeh, M., Sapitang, M., Ahmed, A. N., Irwan, D., El-Shafie, A., 2021. Optimal Operation of Multi-Reservoir Systems for Increasing Power Generation using a Seagull Optimization Algorithm and Heading Policy. Energy Reports. 7, 3703-3725. https://doi.org/10.1016/j.egyr.2021.06.008.
  • Entezari, A., Aslani, A., Zahedi, R., Noorollahi, Y., 2023. Artificial Intelligence and Machine Learning in Energy Systems: A Bibliographic Perspective. Energy Strategy Reviews. 45, 101017. https://doi.org/10.1016/j.esr.2022.101017.
  • Fuhr, A.S., Sumpter, B.G, 2022. Deep Generative Models for Materials Discovery and Machine Learning- Accelerated Innovation. Sec. Computational Materials Science. 9 – 2022. https://doi.org/10.3389/fmats.2022.865270.
  • Gao, F., Shao, X., 2021. Forecasting annual natural gas consumption via the application of a novel hybrid model. Environ Sci Pollut Res. 28, 21411–21424. https://doi.org/10.1007/s11356-020-12275-w.
  • Ge, M., Bangui, H., Buhnova, B., 2018. Big Data for Internet of Things: A Survey. Future Generation Comput.Syst. 87, 601-614. https://doi.org/10.1016/j.future.2018.04.053.
  • Ge, L., Zhang, B., Huang, W., Li, Y., Hou, L., Xiao, J., Mao, Z., Li, X., 2024. A Review of Hydrogen Generation, Storage, and Applications in Power System. Journal of Energy Storage. 75, 109307. https://doi.org/10.1016/j.est.2023.109307.
  • Giovanelli, C., Sierla, S., Ichise, R., Vyatkin, V., 2018. Exploiting Artificial Neural Networks for the Prediction of Ancillary Energy Market Prices. Energies. 11(7), 1906. https://doi.org/10.3390/en11071906.
  • Godarzi, A. A., Amiri, R. M., Talaei, A., Jamasb, T., 2014. Predicting Oil Price Movements: A Dynamic Artificial Neural Network Approach. Energy Policy. 68, 371-382. https://doi.org/10.1016/j.enpol.2013.12.049.
  • Gui, J., Sun, Z., Wen, Y., Tao, D., Ye, J. 2023. A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications. IEEE Transactions on Knowledge and Data Engineering. 35(4), 3313-3332. https://doi.org/10.1109/TKDE.2021.3130191.
  • Heidarpanah, M., Hooshyaripor, F., Fazeli, M., 2023. Daily Electricity Price Forecasting using Artificial Intelligence Models in the Iranian Electricity Market. Energy. 263, 126011. https://doi.org/10.1016/j.energy.2022.12601
  • Himeur, Y., Sayed, A. N., Alsalemi, A., Bensaali, F., Amira, A., 2024. Edge AI for Internet of Energy: Challenges and Perspectives. Internet of Things. 25, 101035. https://doi.org/10.1016/j.iot.2023.101035.
  • Hong, T., Fan, S., 2016. Probabilistic Electric Load Forecasting: A Tutorial Review. Int.J.Forecast. 32(3), 914-938. https://doi.org/10.1016/j.ijforecast.2015.11.011.
  • Huang, J., Chen, X., Zhao, X., 2024. How Digital Technology Reduces Carbon Emissions: From the Perspective of Green Innovation, Industry Upgrading, and Energy Transition. J Knowl Econ. https://doi.org/10.1007/s13132-024- 01895-z.
  • Huntington, H. G., 2021. Model Evaluation for Policy Insights: Reflections on the Forum Process. Energy Policy. 156, 112365. https://doi.org/10.1016/j.enpol.2021.112365.
  • IEA, 2023a. Greenhouse Gas Emissions from Energy Data Explorer, Paris. https://www.iea.org/data-andstatistics/ data-tools/greenhouse-gas-emissions-from-energy-data-explorer.
  • IEA, 2023b. World Energy Outlook 2023, Paris. https://www.iea.org/reports/world-energy-outlook-2023.
  • IEA, 2023c. Credible Pathways to 1.5 °C Four pillars for action in the 2020s, Paris. https://www.iea.org/reports/credible-pathways-to-150c.
  • IEA, 2024. Electricity 2024. Analysis and forecast to 2026. https://www.iea.org/reports/electricity-2024.
  • IRENA, 2023a. World Energy Transitions Outlook 2023. https://www.irena.org/Digital-Report/World-Energy- Transitions-Outlook-2023.
  • IRENA, 2023b. Renewable power generation costs in 2022. https://www.irena.org/Publications/2023/Aug/Renewable-Power-Generation-Costs-in-2022.
  • Iria, J., Soares, F., 2019. Real-Time Provision of Multiple Electricity Market Products by an Aggregator of Prosumers. Appl.Energy. 255, 113792. https://doi.org/10.1016/j.apenergy.2019.113792.
  • Jafari, M., Botterud, A., Sakti, A., 2022. Decarbonizing Power Systems: A Critical Review of the Role of Energy Storage. Renewable and Sustainable Energy Reviews. 158, 112077. https://doi.org/10.1016/j.rser.2022.112077.
  • Jiang, H., Wang, K., Wang, Y., Gao, M., Zhang, Y., 2016. Energy big data: A survey. IEEE Access. 4, 3844-3861. https://doi.org/10.1109/ACCESS.2016.2580581.
  • Jovanović, R.Ž, Sretenović, A.A., Živković, B.D., 2015. Ensemble of various Neural Networks for Prediction of Heating Energy Consumption. Energy Build. 94, 189-199. https://doi.org/10.1016/j.enbuild.2015.02.052.
  • Kang, J., Li, N., Zhao, L., Xiong, G., Wang, D., Xiong, Y., Luo, Z., 2022. Construction of Complex Digital Rock Physics Based on Full Convolution Network. Petroleum Science. 19(2), 651-662. https://doi.org/10.1016/j.petsci.2021.11.018.
  • Kaur, J., Parmar, K.S., Singh, S., 2023. Autoregressive models in environmental forecasting time series: a theoretical and application review. Environ Sci Pollut Res. 30, 19617–19641. https://doi.org/10.1007/s11356-023- 25148-9.
  • Kebede, A.A., Kalogiannis, T., Van Mierlo, J., Berecibar, M., 2022. A Comprehensive Review of Stationary Energy Storage Devices for Large Scale Renewable Energy Sources Grid Integration. Renewable and Sustainable Energy Reviews. 159, 112213. https://doi.org/10.1016/j.rser.2022.112213.
  • Khayatian, F., Sarto, L., Dall’O’, G., 2016. Application of Neural Networks for Evaluating Energy Performance Certificates of Residential Buildings. Energy Build. 125, 45-54. https://doi.org/10.1016/j.enbuild.2016.04.067.
  • Khawaja, Y., Shankar, N., Qiqieh, I., Alzubi, J., Alzubi, O., Nallakaruppan, M.K., Padmanaban, S., 2023. Battery Management Solutions for Li-Ion Batteries Based on Artificial Intelligence. Ain Shams Engineering Journal. 14(12), 102213. https://doi.org/10.1016/j.asej.2023.102213.
  • Kosovic, B., Haupt, S.E., Adriaansen, D., Alessandrini, S., Wiener, G. et al, 2020. A comprehensive wind power forecasting system integrating artificial intelligence and numerical weather prediction. Energies. 13, 1372. https://doi.org/10.3390/en13061372.
  • Krichen, M., 2023. Convolutional Neural Networks: A Survey. Computers. 12, 151. https://doi.org/10.3390/computers12080151.
  • Krizhevsky, A., Sutskever, I., Hinton, G. E., 2012. ImageNet Classification with Deep Convolutional Neural Networks. Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS 2012). https://doi.org/10.1145/3065386.
  • Kumar, R., Kumar, S.K., Diván, M.J., 2022. Optimization of power consumption in data centers using machine learning based approaches: a review. International Journal of Electrical and Computer Engineering. 12, 3. http://doi.org/10.11591/ijece.v12i3.pp3192-3203.
  • Kuster, C., Rezgui, Y., Mourshed, M., 2017. Electrical Load Forecasting Models: A Critical Systematic Review. Sustainable Cities and Society. 35, 257-270. https://doi.org/10.1016/j.scs.2017.08.009.
  • Li, Q., Meng, Q., Cai, J., Yoshino, H., Mochida, A., 2009. Predicting Hourly Cooling Load in the Building: A Comparison of Support Vector Machine and Different Artificial Neural Networks. Energy Conversion and Management. 50(1), 90-96. https://doi.org/10.1016/j.enconman.2008.08.033.
  • Lim, B., Arık, S. Ö, Loeff, N., Pfister, T., 2021. Temporal Fusion Transformers for Interpretable Multi-Horizon Time Series Forecasting. Int.J.Forecast. 37(4), 1748-1764. https://doi.org/10.1016/j.ijforecast.2021.03.012.
  • Lima, M.A., Carvalho, P., Fernández-Ramírez, L.M., Braga, A.P.S., 2020. Improving Solar Forecasting using Deep Learning and Portfolio Theory Integration. Energy. 195, 117016. https://doi.org/10.1016/j.energy.2020.117016.
  • Lonergan, K. E., Suter, N., Sansavini, G., 2023. Energy Systems Modelling for just Transitions. Energy Policy. 183, 113791. https://doi.org/10.1016/j.enpol.2023.113791.
  • Lopez-Garcia, T.B., Coronado-Mendoza, A., Domínguez-Navarro, J. A., 2020. Artificial Neural Networks in Microgrids: A Review. Eng Appl Artif Intell. 95, 103894. https://doi.org/10.1016/j.engappai.2020.103894.
  • Lu, H., Ma, X., Ma, M., Zhu, S., 2021. Energy Price Prediction using Data-Driven Models: A Decade Review. Computer Science Review. 39, 100356. https://doi.org/10.1016/j.cosrev.2020.100356.
  • Luo, X., Zhu, X., Lim, E.G., 2018. A hybrid model for short term real-time electricity price forecasting in smart grid. Big Data Anal. 3, 8. https://doi.org/10.1186/s41044-018-0036-x.
  • Maldonado-Correa, J., Solano, J.C., Rojas-Moncayo, M., 2021. Wind Power Forecasting: A Systematic Literature Review. Wind Eng. 45(2), 413-426. https://doi.org/10.1177/0309524X19891672.
  • Mandal, P., Senjyu, T., Funabashi, T., 2006. Neural Networks Approach to Forecast several Hour Ahead Electricity Prices and Loads in Deregulated Market. Energy Conversion and Management. 47(15), 2128-2142. https://doi.org/10.1016/j.enconman.2005.12.008.
  • Massaoudi, M., Refaat, S.S., Chihi, I., Trabelsi, M., Oueslati, F.S., Abu-Rub, H., 2021. A Novel Stacked Generalization Ensemble-Based Hybrid LGBM-XGB-MLP Model for Short-Term Load Forecasting. Energy. 214, 118874. https://doi.org/10.1016/j.energy.2020.118874.
  • Modu, B., Abdullah, M.P., Bukar, A. L., Hamza, M.F., 2023. A Systematic Review of Hybrid Renewable Energy Systems with Hydrogen Storage: Sizing, Optimization, and Energy Management Strategy. Int J Hydrogen Energy. 48(97), 38354-38373. https://doi.org/10.1016/j.ijhydene.2023.06.126.
  • Mohammadpoor, M., Torabi, F., 2020. Big Data Analytics in Oil and Gas Industry: An Emerging Trend. Petroleum. 6(4), 321-328. https://doi.org/10.1016/j.petlm.2018.11.001.
  • Mostafa, M. M. and El-Masry, A. A., 2016. Oil Price Forecasting using Gene Expression Programming and Artificial Neural Networks. Econ.Model. 54, 40-53. https://doi.org/10.1016/j.econmod.2015.12.014.
  • Mostafa, N., Ramadan, H. S. M., Elfarouk, O., 2022. Renewable Energy Management in Smart Grids by using Big Data Analytics and Machine Learning. Machine Learning with Applications. 9, 100363. https://doi.org/10.1016/j.mlwa.2022.100363.
  • Qing, W., 2021. Global Practice of AI and Big Data in Oil and Gas Industry, en Patrick Bangert (ed.): Machine Learning and Data Science in the Oil and Gas Industry. Capítulo 9, 181-210: Gulf Professional Publishing.
  • Rajendra, K., Sunil, K., Khatri, M.J., 2022. Optimization of power consumption in data centers using machine learning based approaches: a review. International Journal of Electrical and Computer Engineering. 12, 3192-3203. https://doi.org/10.11591/ijece.v12i3.pp3192-3203.
  • Reynolds, J., Rezgui, Y., Kwan, A., Piriou, S., 2018. A Zone-Level, Building Energy Optimisation Combining an Artificial Neural Network, a Genetic Algorithm, and Model Predictive Control. Energy. 151, 729-739. https://doi.org/10.1016/j.energy.2018.03.113.
  • Rigoni, V., Flynn, D., Keane, A., 2021. Coordinating Demand Response Aggregation with LV Network Operational Constraints. IEEE Transactions on Power Systems. 36(2), 979-990. https://doi.org/10.1109/TPWRS.2020.3014144.
  • Rodríguez-López, M.Á., 2015. Metodología para sistemas inteligentes de detección de mal funcionamiento en equipos. Universidad de La Rioja. https://dialnet.unirioja.es/servlet/tesis?codigo=46488.
  • Rodríguez-López, M.Á., 2022. Climate Change Impacts on Renewable Energy Generation and Energy Generation Scenarios. https://hdl.handle.net/20.500.14352/3953.
  • Rodríguez-López, M.Á., Cerdá, E., Rio, P.d., 2020. Modeling Wind-Turbine Power Curves: Effects of Environmental emperature on Wind Energy Generation. Energies. 13(18), 4941. https://doi.org/10.3390/en13184941.
  • Rosenblatt, F., 1958. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review. 65(6), 386-408. https://doi.org/10.1037/h0042519.
  • Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning representations by back-propagating errors. Nature. 323, 533-536. https://doi.org/10.1038/323533a0.
  • Saviuc, I., Zabala López, C., Puskás-Tompos, A., Rollert, K., Bertoldi, P., 2022. Explicit Demand Response for small end-users and independent aggregators – Status, context, enablers and barriers. Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/625919, JRC129745.
  • Shahidehpour, M., Yamin, H., Li, Z., 2002. Market operations in electric power systems: forecasting, scheduling, and risk management. John Wiley & Sons, New York.
  • Shaqour, A., Ono, T., Hagishima, A., Farzaneh, H., 2022. Electrical Demand Aggregation Effects on the Performance of Deep Learning-Based Short-Term Load Forecasting of a Residential Building. Energy and AI. 8, 100141. https://doi.org/10.1016/j.egyai.2022.100141.
  • Sharma, S., Malik, A., Sharma, C. et al., 2023. Adoption of industry 4.0 in different sectors: a structural review using natural language processing. Int J Interact Des Manuf. https://doi.org/10.1007/s12008-023-01550-y.
  • Singh, S., Bansal, P., Hosen, M., Bansal, S. K., 2023. Forecasting Annual Natural Gas Consumption in USA: Application of Machine Learning Techniques- ANN and SVM. Resour.Policy. 80, 103159. https://doi.org/10.1016/j.resourpol.2022.103159.
  • Sircar, A., Yadav, K., Rayavarapu, K., Bist, N., Oza, H., 2021. Application of machine learning and artificial intelligence in oil and gas industry. Petroleum Research. 6(4), 379-391. https://doi.org/10.1016/j.ptlrs.2021.05.009.
  • Shin, H., Hou, T., Park, K., Park, C., Choi, S., 2013. Prediction of Movement Direction in Crude Oil Prices Based on Semi-Supervised Learning. Decis. Support Syst. 55(1), 348-358. https://doi.org/10.1016/j.dss.2012.11.009.
  • Su, M., Zhang, Z., Zhu, Y., Zha, D., Wen, W., 2019. Data Driven Natural Gas Spot Price Prediction Models Using Machine Learning Methods. Energies. 12, 1680. https://doi.org/10.3390/en12091680.
  • Sun, M., Han, C., Nie, Q., Xu, J., Zhang, F., Zhao, Q., 2022. Understanding Building Energy Efficiency with Administrative and Emerging Urban Big Data by Deep Learning in Glasgow. Energy Build. 273, 112331. https://doi.org/10.1016/j.enbuild.2022.112331.
  • Tamba, J.G., Essiane, S.N., Sapnken, E.F., Koffi, F.D., Nsouandélé, J.L., Soldo, B., Njomo, D., 2018. Forecasting natural gas: A literature survey. Int. J. Energy Econ. Policy 2018, 8, 216–249.
  • Taniguchi-Matsuoka, A., Shimoda, Y., Sugiyama, M., Kurokawa, Y., Matoba, H., Yamasaki, T., Morikuni, T., Yamaguchi, Y., 2020. Evaluating Japan’s National Greenhouse Gas Reduction Policy using a Bottom-Up Residential End-use Energy Simulation Model. Appl.Energy. 279, 115792. https://doi.org/10.1016/j.apenergy.2020.115792.
  • Tekin, N., Aris, A., Acar, A., Uluagac, S., Gungor, V. C., 2024. A Review of on-Device Machine Learning for IoT: An Energy Perspective. Ad Hoc Networks. 153, 103348. https://doi.org/10.1016/j.adhoc.2023.103348.
  • Tiwari, A. K., Sharma, G. D., Rao, A., Hossain, M. R., Dev, D., 2024. Unraveling the Crystal Ball: Machine Learning Models for Crude Oil and Natural Gas Volatility Forecasting. Energy Econ. 134, 107608. https://doi.org/10.1016/j.eneco.2024.107608.
  • Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A. et al., 2023. LLaMA: Open and Efficient Foundation Language Models. https://arxiv.org/abs/2302.13971.
  • Triguero, I., Molina, D., Poyatos, J., Del Ser, J., Herrera, F., 2024. General Purpose Artificial Intelligence Systems (GPAIS): Properties, Definition, Taxonomy, Societal Implications and Responsible Governance. Information Fusion. 103, 102135. https://doi.org/10.1016/j.inffus.2023.102135.
  • Varela Soares, I., Mauger, R., Santos, T., 2023. Considerations for Benefit Stacking Policies in the EU Electricity Storage Market. Energy Policy. 172, 113333. https://doi.org/10.1016/j.enpol.2022.113333.
  • Vaswani, A., Shazeer, M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I., 2023. Attention Is All You Need. https://arxiv.org/abs/1706.03762.
  • Vecchio, P.D., Mele, G., Ndou, V., Secundo, G., 2018. Creating Value from Social Big Data: Implications for Smart Tourism Destinations. Information Processing & Management. 54(5), 847-860. https://doi.org/10.1016/j.ipm.2017.10.006.
  • Vesa, A.V., Cioara, T., Anghel, I., Antal, M., Pop, C., Iancu, B., Salomie, I., Dadarlat, V.T., 2020. Energy Flexibility Prediction for Data Center Engagement in Demand Response Programs. Sustainability. 12, 1417. https://doi.org/10.3390/su12041417.
  • Voyant, C., Notton, G., Kalogirou, S., Nivet, M., Paoli, C., Motte, F., Fouilloy, A., 2017. Machine Learning Methods for Solar Radiation Forecasting: A Review. Renewable Energy. 105, 569-582. https://doi.org/10.1016/j.renene.2016.12.095.
  • Wan, J., Yu, Y., Wu, Y., Feng, R., Yu, N., 2012. Hierarchical Leak Detection and Localization Method in Natural Gas Pipeline Monitoring Sensor Networks. Sensors. 12(1), 189-214. https://doi.org/10.3390/s120100189.
  • Wang, H., Liu, N., Zhang, Y. et al., 2020. Deep reinforcement learning: a survey. Front Inform Technol Electron Eng. 21, 1726–1744. https://doi.org/10.1631/FITEE.1900533.
  • Weron, R., 2006. Modeling and forecasting electricity loads and prices: A statistical approach. John Wiley, England.
  • Weron, R., 2014. Electricity Price Forecasting: A Review of the State-of-the-Art with a Look into the Future. Int.J.Forecast. 30(4), 1030-1081. https://doi.org/10.1016/j.ijforecast.2014.08.008.
  • Wu, B., Wang, L., Lv, S., Zeng, Y., 2021. Effective Crude Oil Price Forecasting using New Text-Based and Big- Data-Driven Model. Measurement. 168, 108468. https://doi.org/10.1016/j.measurement.2020.108468.
  • Wu, Z., Li, N., Peng, J., Cui, H., Liu, P., Li, H., Li, X., 2018. Using an Ensemble Machine Learning Methodology- Bagging to Predict Occupants’ Thermal Comfort in Buildings. Energy Build. 173, 117-127. https://doi.org/10.1016/j.enbuild.2018.05.031.
  • Yamin, H. Y., Shahidehpour, S. M., Li, Z., 2004. Adaptive Short-Term Electricity Price Forecasting using Artificial Neural Networks in the Restructured Power Markets. International Journal of Electrical Power & Energy Systems. 26(8), 571-581. https://doi.org/10.1016/j.ijepes.2004.04.005.
  • Yazhari Kermani, A., Abdollahi, A., Rashidinejad, M., 2024. Cyber-Secure Energy and Flexibility Scheduling of Interconnected Local Energy Networks with Introducing an XGBoost-Assisted False Data Detection and Correction Method. International Journal of Electrical Power & Energy Systems. 155, 109683. https://doi.org/10.1016/j.ijepes.2023.109683.
  • Yin, S., Fu, C., Zhao, S., Li, K., Sun, X., Xu, T., 2024. Enhong Chen, A Survey on Multimodal Large Language Models. https://arxiv.org/abs/2306.13549.
  • Zendehboudi, A., Baseer, M. A., Saidur, R., 2018. Application of Support Vector Machine Models for Forecasting Solar and Wind Energy Resources: A Review. J.Clean.Prod. 199, 272-285. https://doi.org/10.1016/j.jclepro.2018.07.164.
  • Zhang, Y., Ma, S., Yang, H., Lv, J., Liu, Y., 2018. A Big Data Driven Analytical Framework for Energy-Intensive Manufacturing Industries. J.Clean.Prod. 197, 57-72. https://doi.org/10.1016/j.jclepro.2018.06.170.
  • Zhao, H., Magoulès, F., 2012. A Review on the Prediction of Building Energy Consumption. Renewable and Sustainable Energy Reviews. 16(6), 3586-3592. https://doi.org/10.1016/j.rser.2012.02.049.
  • Zhao, Y., Li, J., Yu, L., 2017. A Deep Learning Ensemble Approach for Crude Oil Price Forecasting. Energy Econ. 66, 9-16. https://doi.org/10.1016/j.eneco.2017.05.023.
  • Zhao, E., Sun, S., Wang, S., 2022. New Developments in Wind Energy Forecasting with Artificial Intelligence and Big Data: A Scientometric Insight. Data Science and Management. 5(2), 84-95. https://doi.org/10.1016/j.dsm.2022.05.002.
  • Zhou, K., Fu, C., Yang, S., 2016. Big Data Driven Smart Energy Management: From Big Data to Big Insights. Renewable and Sustainable Energy Reviews. 56, 215-225. https://doi.org/10.1016/j.rser.2015.11.050.