Más allá de los muros: Estructuras negativas y “falsos positivos”. La alianza entre la arqueología y la geofísica

  1. Vallés Iriso, Javier 3
  2. Ortiz Nieto-Márquez, Irene 3
  3. Herránz Rodrigo, Darío 2
  4. Yravedra Sainz de los Terreros, José 3
  5. Martínez Pagán, Pedro 1
  6. Martínez Segura, Marcos Antonio 1
  7. Bellón Ruiz, Juan Pedro 4
  8. Lechuga Chica, Miguel Ángel 4
  9. Martín Hernández , Esperanza 5
  1. 1 Universidad Politécnica de Cartagena
    info

    Universidad Politécnica de Cartagena

    Cartagena, España

    ROR https://ror.org/02k5kx966

  2. 2 Institut Català d’Arqueologia Clàssica
  3. 3 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  4. 4 Instituto Universitario de Investigación en Arqueología, Universidad de Jaén
  5. 5 Dolabra S.L
Book:
10ª Asamblea Hispano Portuguesa de Geodesia y Geofísica = 10ª Assembleia Luso-Espanhola de Geodesia e Geofísica

Publisher: Centro Nacional de Información Geográfica

ISBN: 978-84-416-7540-7

Year of publication: 2023

Pages: 1070-1079

Congress: Asamblea Hispano Portuguesa de Geodesia y Geofísica (10. 2022. Toledo, España)

Type: Conference paper

Abstract

The important role of geophysics in archaeology in recent years is well known. The information obtained in a non-intrusiveand non-destructive way has facilitated the documentation of archaeological sites, their excavation and subsequentinterpretation, as well as the maintenance and care of the Heritage.The C.A.I. of Archaeometry of the UCM is in charge of advising and carrying out geophysical studies in archaeologicalsites. In this way, their extension, characteristics and degree of conservation are documented. Thanks to these data,knowledge of the heritage are achieved without the need to destroy the remains.Normally, thanks to geophysical studies, large cities, buildings and structures built with elements such as stone, brick,adobe and even cement are detected and discovered.However, the documentation with geophysical techniques of negative structures (excavated in the sediment) such asditched enclosures, pits, tombs, huts or the negatives of already devastated structures is less common. The reason is thatthese structures are usually filled with the same sediment that surrounds them, so the change of medium does not presenthardly any contrast, so its interpretation is very complex.In this work, we present a series of archaeological finds of this type thanks to the joint work of two geophysical techniques,such as ground penetration radar and electrical tomography. Due to the difficulty of documentation of this type ofnegative elements, interpretation techniques have had to be remodelled and tools adjusted to achieve optimal results.In the same way, some examples of "false positive" structures documented with ground penetration radar will be shown.In these cases, the problem arises when geological elements can be interpreted as anthropic structures.

Bibliographic References

  • [1] Dietz C., Catanzariti G., de la Presa P. and Jimeno A. (2011): “Técnicas no invasivas para el registro del patrimonio arqueológico. Jornadas sobre documentación gráfica del Patrimonio Histórico. Presente y futuro”. IPCE. (IPCE), 118–129.
  • [2] Delibes G., Crespo M. and Rodríguez J. A. (2016): “Anatomía de un recinto de fosos calcolítico del valle medio del Duero: el Casetón de la Era (Villalba de los Alcores, Valladolid)” Del neolític a l’edat del bronze en el Mediterrani occidental. Estudis en homenatge a Bernat Martí Oliver. Ed: M. de P. de València (València: Diputación de Valencia), 387–401.
  • [3] Rejas J. G. and Burillo F. (2016): “Teledetección Aplicada a la Arqueología.” Manual de tecnologías de la información geográfica aplicadas a la arqueología. Ed: M. del C. Mínguez García and E Capdevila Montes (Comunidad de Madrid, Museo Arqueológico Regional : Ilustre Colegio Oficial de Doctores y Licenciados en Filosofía y Letras y en Ciencias de la Comunidad de Madrid), 241–270.
  • [4] Haboudane D., Miller J. R., Pattey E., Zarco-Tejada P. J. and Strachan I. B. (2004): “Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture” Remote Sens. Environ, 90 , 337–352.
  • [5] Kokalj Ž. and Hesse R. (2017): “Airborne Laser Scanning Raster Data Visualization. A Guide to Good Practice.” vol 14 (Ljubljana: Zalozba ZRC).
  • [6] Opitz R. S., Ryzewski K., Cherry J. F. and Moloney B. (2015): “Using airborne LiDAR survey to explore historic-era archaeological landscapes of Montserrat in the Eastern Caribbean” J. F. Archaeol., 40, 523–541.
  • [7] AOC (Archaeology Group) (2015): “An Introduction to LiDAR for Archaeology”.
  • [8] Crutchley S. and Crow P. (2018): “Airborne Lidar in Archaeological Survey: The Light Fantastic”. Swindon. Historic England.
  • [9] García García M. (2013): “Las Pozas (Casaseca de las Chanas, Zamora): dos nuevos recintos de fosos calcolíticos en el Valle del Duero”. Trab. Prehist., 70 , 175–184.
  • [10] Valera A. C. and Becker H. (2011): “Cosmologia e recintos de fossos da pré-história recente: resultados da prospecção geofísica em Xancra (Cuba, Beja)”. Apontamentos Arqueol. e Património, 7, 23–32.
  • [11] Lindinger V., Groh S. and Coolen J. (2009): “From data to structures Multistage geomagnetic data interpretation within the Mautern Hinterland Survey”. ArcheoSciences, 33, 313–316.
  • [12] Jiménez-Jáimez V. (2015): “The Unsuspected Circles . On the Late Recognition of Southern Iberian Neolithic and Chalcolithic Ditched Enclosures”. Proc. Prehist. Soc., 81, 179–98.
  • [13] Valera A. C. and do Pereiro T. (2022): “New images of prehistoric ditched enclosures of Alentejo (South Portugal)”. X Encuentro de Arqueología del Sroeste Penínsular. Ed: J. J. Ávila, M. Bustamante Álvarez and F. J. H. Mora (Ayuntamiento de Zafra), 294–316.
  • 14] Sarris A., Papadopoulos N., Agapiou A., Salvi M. C., Hadjimitsis D. G., Parkinson W. A., Yerkes R. W., Gyucha A. and Duffy P. R. (2013): “Integration of geophysical surveys, ground hyperspectral measurements, aerial and satellite imagery for archaeological prospection of prehistoric sites: The case study of Vészto-Mágor Tell, Hungary”. J. Archaeol. Sci., 40, 1454–1470.
  • [15] Zhao W., Forte E., Fontana F., Pipan M. and Tian G. (2018): “GPR imaging and characterization of ancient Roman ruins in the Aquileia Archaeological Park, NE Italy”. Meas. J. Int. Meas. Confed., 113, 161–171.
  • [16] Piro S. and Campana S. (2012): “GPR investigation in different archaeological sites in Tuscany (Italy). Analysis and comparison of the obtained results Near”. Surf. Geophys., 10, 47–56.
  • [17] Mas Florit C., Cau Ontiveros M. Á., Goossens L., Meyer C., Sala R. and Ortiz H. (2018): “Geophysical survey of two rural sites in Mallorca (Balearic Islands, Spain): Unveiling Roman villae”. J. Appl. Geophys., 150, 101–117.
  • [18] Becker H., Valera A. C. and Castanheira P. (2012): “Monte do Olival 1 (Ferreira do Alentejo, Beja): Magnetometria de cesio num recnto de fossos do 3o milénio AC”. Apontamentos Arqueol. e Património, 8, 1117.
  • [19] Neves S. P., Oliveira R. J., Borges J. F. and Caldeira B. (2014): “Magnetometria e georadar aplicados à arqueologia , O caso da Horta da Torre” Geonovas, 28, 93-98.
  • [20] Becker H. and Valera A. C. (2012): “Luz 20 (Mourao, Évora): Resultados prelinares da prospeçao geofísica (magnetometria de cesio)”. Apontamentos Arqueol. e Património, 8, 7–9.
  • [21] Bernabeu Auban J., Orozco Köhler T. and Diez Castillo A. (2012): “Mas d’Is y las construcciones con fosos del VI al III milenio cal a.C. MARQ”, Arqueol. y Museos, 05, 53–72.
  • [22] Crespo M., Rodríguez Marcos J. A., Delibes de Castro G. and Becker H. (2015): “Prospección magnética en el recinto de fosos calcolítico de “El Casetón de la Era” (Villaba de los Alcores, Valladolid): representación gráfica e interpretación arqueológica” BSAA Arqueología, LXXXI, 55–84.
  • [23] Loke M. H. and Barker R. D. (1996): “Rapid least-squares inversion of apparent resistivity pseudosections by a puasi-Newton method”. Geophys. Prospect., 44, 31–152.