Exploring the physical properties of Eu<sub>2</sub>SrCo<sub>1.5</sub>Mn<sub>0.5</sub>O<sub>7</sub>, a new n = 2 member of the Ruddlesden–Popper series (Eu,Sr)<sub>n+1</sub>(Co,Mn)<sub>n</sub>O<sub>3n+1</sub>

  1. Boulahya, Khalid 12345
  2. Hassan, Manar 12345
  3. Gil, Daniel Muñoz 12345
  4. Romero, Julio 458910
  5. Herrero, Adrián Gómez 4567
  6. Martin, Susana García 12345
  7. Amador, Ulises 511121314
  1. 1 Departamento de Química Inorgánica
  2. 2 Facultad Ciencias Químicas
  3. 3 Univ. Complutense
  4. 4 E-28040 Madrid
  5. 5 Spain
  6. 6 Centro Nacional de Microscopía Electrónica
  7. 7 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  8. 8 CAI Técnicas Físicas
  9. 9 Facultad de Ciencias Físicas
  10. 10 Univ. Complutense de Madrid
  11. 11 Departamento de Química
  12. 12 Facultad de Farmacia
  13. 13 Universidad CEU San Pablo
    info

    Universidad CEU San Pablo

    Madrid, España

    ROR https://ror.org/00tvate34

  14. 14 Madrid
Journal:
Journal of Materials Chemistry A

ISSN: 2050-7488 2050-7496

Year of publication: 2015

Volume: 3

Issue: 45

Pages: 22931-22939

Type: Article

DOI: 10.1039/C5TA05464H GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Journal of Materials Chemistry A

Abstract

A new oxide of the Ruddlesden–Popper series has been isolated and structurally characterized in the Eu–Sr–Co–Mn–O system. X-ray diffraction and electron microscopy show that polycrystalline Eu2SrCo1.5Mn0.5O7 constitutes the n = 2 member of a homologous series, the essential feature of which is the existence of two connected Co/Mn octahedral layers, separated by Eu atoms. Electrochemical studies show that the area-specific resistance of this compound is 0.15 Ω cm2 at 700 °C in air, a performance which is comparable to that of the best state-of-the-art materials used as cathodes in intermediate temperature solid oxide fuel cells. Below 150 K the title material presents two different magnetic phenomena. The first one corresponds to the formation of ferromagnetic nanoclusters (TC ∼ 121 K) within an ordered Co2+/Mn4+ atomic configuration, whereas at lower temperature (∼21 K) a spin glass state occurs.

Bibliographic References

  • Petrov, (1995), Solid State Ionics, 80, pp. 189, 10.1016/0167-2738(95)00114-L
  • Briceno, (1995), Science, 270, pp. 273, 10.1126/science.270.5234.273
  • Masset, (2000), Phys. Rev. B: Condens. Matter Mater. Phys., 62, pp. 166, 10.1103/PhysRevB.62.166
  • Boulahya, (2007), Eur. J. Inorg. Chem., pp. 2068, 10.1002/ejic.200700047
  • Boulahya, (2007), Chem.–Eur. J., 13, pp. 910, 10.1002/chem.200600882
  • Dann, (1991), J. Solid State Chem., 92, pp. 237, 10.1016/0022-4596(91)90263-H
  • Ruddlesden, (1957), Acta Crystallogr., 10, pp. 538, 10.1107/S0365110X57001929
  • Ruddlesden, (1958), Acta Crystallogr., 11, pp. 54, 10.1107/S0365110X58000128
  • Jantsky, (2014), Chem. Mater., 26, pp. 886, 10.1021/cm400394c
  • Prado, (2001), J. Solid State Chem., 158, pp. 307, 10.1006/jssc.2001.9111
  • Aguadero, (2008), Solid State Ionics, 179, pp. 393, 10.1016/j.ssi.2008.01.099
  • Amow, (2006), Solid State Ionics, 177, pp. 1837, 10.1016/j.ssi.2006.01.017
  • Lee, (2006), J. Electrochem. Soc., 153, pp. A1255, 10.1149/1.2195835
  • Lee, (2006), Chem. Mater., 18, pp. 1621, 10.1021/cm052645+
  • Mazo, (2015), J. Alloys Compd., 639, pp. 381, 10.1016/j.jallcom.2015.03.081
  • Song, (2011), Ceram. Int., 37, pp. 573, 10.1016/j.ceramint.2010.10.004
  • Al Daroukh, (2003), Solid State Ionics, 158, pp. 141, 10.1016/S0167-2738(02)00773-7
  • El Shinawi, (2008), J. Solid State Chem., 181, pp. 2705, 10.1016/j.jssc.2008.06.039
  • Jin, (2009), J. Alloys Compd., 474, pp. 573, 10.1016/j.jallcom.2008.07.002
  • Skinner, (2000), Solid State Ionics, 135, pp. 709, 10.1016/S0167-2738(00)00388-X
  • Rodríguez-Carvajal, (1993), Phys. B, 192, pp. 55, 10.1016/0921-4526(93)90108-I
  • Yuste, (2011), Dalton Trans., 40, pp. 7908, 10.1039/c1dt10196j
  • Bain, (2008), J. Chem. Educ., 85, pp. 532, 10.1021/ed085p532
  • D. Johnson , ZView: A software Program for IES Analysis, Version 2.9c, Scribner Associates, Inc., 2005
  • Adler, (1998), Solid State Ionics, 111, pp. 125, 10.1016/S0167-2738(98)00179-9
  • Adler, (2004), Chem. Rev., 104, pp. 4791, 10.1021/cr020724o
  • Gurusinghe, (2013), Mater. Res. Bull., 48, pp. 3537, 10.1016/j.materresbull.2013.05.058
  • Crewe, (1980), Rep. Prog. Phys., 43, pp. 621, 10.1088/0034-4885/43/5/002
  • Findlay, (2010), Ultramicroscopy, 110, pp. 903, 10.1016/j.ultramic.2010.04.004
  • Findlay, (2009), Appl. Phys. Lett., 95, pp. 3, 10.1063/1.3265946
  • S. J. Pennycook and P. D.Nellist, Scanning Transmission Electron Microscopy: Imaging and Analysis, Springer, New York, 2011
  • Aso, (2013), Sci. Rep., 3, pp. 6, 10.1038/srep02214
  • Battle, (1997), Chem. Mater., 9, pp. 552, 10.1021/cm960398r
  • Glazer, (1972), Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., B28, pp. 3384, 10.1107/S0567740872007976
  • Chinelatto, (2015), Dalton Trans., 44, pp. 7643, 10.1039/C5DT00170F
  • Azcondo, (2015), Dalton Trans., 44, pp. 3801, 10.1039/C4DT03112A
  • Lamonova, (2011), J. Phys. Chem. A, 115, pp. 13596, 10.1021/jp2071265
  • Joseph Joly, (2002), Solid State Commun., 121, pp. 219, 10.1016/S0038-1098(01)00456-2
  • Kyômen, (2003), Chem. Mater., 15, pp. 4798, 10.1021/cm0302781
  • Kyomen, (2004), Chem. Mater., 16, pp. 179, 10.1021/cm030279t
  • Joseph Joly, (2001), Mater. Lett., 51, pp. 172, 10.1016/S0167-577X(01)00285-3
  • J. A. Mydosh , Spin Glasses: an Experimental Introduction, Taylor and Francis, London, 1993
  • Munoz-Gil, (2014), J. Power Sources, 263, pp. 90, 10.1016/j.jpowsour.2014.04.019