Unprecedented rock-salt ordering of A and B cations in the double perovskite Nd<sub>2−x</sub>Ca<sub>x</sub>MgTiO<sub>6−δ</sub> and defect association

  1. Teresa Azcondo, M. 45678
  2. Boulahya, Khalid 910111213
  3. Ritter, Clemens 123
  4. García-Alvarado, Flaviano 45678
  5. Amador, Ulises 45678
  1. 1 Institut Laue-Langevin
    info

    Institut Laue-Langevin

    Grenoble, Francia

    ROR https://ror.org/01xtjs520

  2. 2 BP 156-38042 Grenoble Cedex 9
  3. 3 France
  4. 4 Universidad CEU San Pablo
    info

    Universidad CEU San Pablo

    Madrid, España

    ROR https://ror.org/00tvate34

  5. 5 CEU Universities
  6. 6 Facultad de Farmacia
  7. 7 Departamento de Química y Bioquímica
  8. 8 Urbanización Montepríncipe
  9. 9 Departamento de Química Inorgánica
  10. 10 Facultad de Química
  11. 11 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  12. 12 E-28040 Madrid
  13. 13 Spain
Revista:
Dalton Transactions

ISSN: 1477-9226 1477-9234

Any de publicació: 2019

Volum: 48

Número: 36

Pàgines: 13651-13661

Tipus: Article

DOI: 10.1039/C9DT02768H GOOGLE SCHOLAR lock_openAccés obert editor

Altres publicacions en: Dalton Transactions

Resum

The partial substitution of up to 5% Nd+3 by Ca+2 results in the oxide Nd1.90Ca0.10MgTiO5.94 that presents some remarkable structural features with a noticeable influence on its properties. In this oxide with a monoclinic perovskite-like structure and an octahedral tilting scheme (a−a−b+), both A- and B-ions are arranged in a rock-salt like manner, representing therefore the first example of a type of perovskite theoretically predicted. Besides this unprecedented arrangement of A- and B-ions, the oxygen vacancies created through doping with acceptor ions are trapped by association with the acceptor defects Image ID:c9dt02768h-t1.gif and hence the mobility of these vacancies is strongly limited. The oxygen conductivity of the substituted material is lower and the activation energy for oxygen motion is higher than those of the parent oxide, in which the concentration of anion vacancies is only due to intrinsic defects.

Referències bibliogràfiques

  • Mahato, (2015), Prog. Mater. Sci., 72, pp. 141, 10.1016/j.pmatsci.2015.01.001
  • Hayashi, (1999), Solid State Ionics, 122, pp. 1, 10.1016/S0167-2738(99)00066-1
  • Ishihara, (1994), J. Am. Chem. Soc., 116, pp. 3801, 10.1021/ja00088a016
  • R. H. Mitchell , Perovskite: Modern and Ancient , Ontario, Canada , 2002
  • Perez Flores, (2011), J. Mater. Chem., 21, pp. 13195, 10.1039/c1jm11975c
  • Yuste, (2011), Dalton Trans., 40, pp. 7908, 10.1039/c1dt10196j
  • Gomez-Perez, (2016), J. Mater. Chem. A, 4, pp. 3386, 10.1039/C5TA08025H
  • Pérez-Flores, (2013), Chem. Mater., 25, pp. 2484, 10.1021/cm4008014
  • Jiang, (2008), J. Mater. Sci., 43, pp. 6799, 10.1007/s10853-008-2966-6
  • Groen, (1986), Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 42, pp. 1472, 10.1107/S0108270186091801
  • Rodríguez-Carvajal, (1993), Phys. B, 192, pp. 55, 10.1016/0921-4526(93)90108-I
  • J. Johnson , ZView: A software Program for IES Analy , Scribner Associates, Inc. , 2005
  • Maupoey, (2012), J. Mater. Chem., 22, pp. 18033, 10.1039/c2jm33427e
  • Howard, (2005), Acta Crystallogr., Sect. B: Struct. Sci., 61, pp. 258, 10.1107/S0108768105012395
  • Yang, (1999), Acta Crystallogr., Sect. B: Struct. Sci., 55, pp. 348, 10.1107/S0108768198018333
  • Maupoey, (2014), Dalton Trans., 43, pp. 14099, 10.1039/C4DT01337A
  • Glazer, (1972), Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 28, pp. 3384, 10.1107/S0567740872007976
  • Howard, (1998), Acta Crystallogr., Sect. B: Struct. Sci., 54, pp. 782, 10.1107/S0108768198004200
  • Howard, (2005), Acta Crystallogr., Sect. A: Found. Crystallogr., 61, pp. 93, 10.1107/S0108767304024493
  • King, (2010), J. Mater. Chem., 20, pp. 5785, 10.1039/b926757c
  • Knapp, (2006), J. Solid State Chem., 179, pp. 1076, 10.1016/j.jssc.2006.01.005
  • Woodward, (1997), Acta Crystallogr., Sect. B: Struct. Sci., 53, pp. 44, 10.1107/S0108768196012050
  • Woodward, (1997), Acta Crystallogr., Sect. B: Struct. Sci., 53, pp. 32, 10.1107/S0108768196010713
  • Gomez-Perez, (2014), J. Appl. Crystallogr., 47, pp. 745, 10.1107/S1600576714004907
  • Shannon, (1976), Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 32, pp. 751, 10.1107/S0567739476001551
  • B. N. Figgis and M. A.Hitchman , Ligand Field Theory and Its Applications , Wiley-VCH , New York , 2000
  • A. H. Morrish , The Physical Principles of Magnetism , R.E. Krieger Publishing Company , Florida, USA , 1983
  • Bersuker, (2017), J. Phys.: Conf. Ser., 833, pp. 012001
  • Irvine, (1990), Adv. Mater., 2, pp. 132, 10.1002/adma.19900020304
  • Jasinski, (2005), J. Electrochem. Soc., 152, pp. J27, 10.1149/1.1861174
  • Inaba, (1996), Solid State Ionics, 83, pp. 1, 10.1016/0167-2738(95)00229-4
  • Routbort, (1996), Solid State Ionics, 90, pp. 21, 10.1016/S0167-2738(96)00402-X
  • Lane, (1999), Solid State Ionics, 121, pp. 201, 10.1016/S0167-2738(99)00014-4
  • Packer, (2010), Adv. Mater., 22, pp. 1613, 10.1002/adma.200902692
  • Jonscher, (1972), J. Non-Cryst. Solids, 8–10, pp. 293, 10.1016/0022-3093(72)90151-2
  • Funke, (1994), J. Non-Cryst. Solids, 172–174, pp. 1215, 10.1016/0022-3093(94)90646-7
  • Ngai, (1999), Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 60, pp. 4511, 10.1103/PhysRevE.60.4511