Universidad Carlos III de Madrid-ko ikertzaileekin lankidetzan egindako argitalpenak (24)

2024

  1. BLOW-UP FOR A FULLY FRACTIONAL HEAT EQUATION

    Discrete and Continuous Dynamical Systems- Series A, Vol. 44, Núm. 2, pp. 569-584

2022

  1. A nonlinear diffusion equation with reaction localized in the half-line†

    Mathematics In Engineering, Vol. 4, Núm. 3, pp. 1-24

2021

  1. Blow-up rates for a fractional heat equation

    Proceedings of the American Mathematical Society, Vol. 149, Núm. 5, pp. 2011-2018

  2. Grow-up for a heat equation with a localized reaction

    Proceedings of the 7th Workshop in Mathematical Analysis in Alicante 2020

2020

  1. Grow-up for a quasilinear heat equation with a localized reaction

    Journal of Differential Equations, Vol. 268, Núm. 10, pp. 6211-6229

2018

  1. Grow-up for a quasilinear heat equation with a localized reaction in higher dimensions

    Revista matemática complutense, Vol. 31, Núm. 3, pp. 805-832

2012

  1. Critical exponents for a semilinear parabolic equation with variable reaction

    Proceedings of the Royal Society of Edinburgh Section A: Mathematics

2011

  1. Unbounded solutions of the nonlocal heat equation

    Communications on Pure and Applied Analysis, Vol. 10, Núm. 6, pp. 1663-1686

2010

  1. Stability of the blow-up time and the blow-up set under perturbations

    Discrete and Continuous Dynamical Systems, Vol. 26, Núm. 1, pp. 43-61

2009

  1. Numerical quenching of a system of equations coupled at the boundary

    Mathematical Methods in the Applied Sciences, Vol. 32, Núm. 18, pp. 2439-2459

2008

  1. Incomplete quenching in a system of heat equations coupled at the boundary

    Journal of Mathematical Analysis and Applications, Vol. 346, Núm. 1, pp. 145-154

2007

  1. Blow-up with logarithmic nonlinearities

    Journal of Differential Equations, Vol. 240, Núm. 1, pp. 196-215

  2. Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models

    Proceedings of the American Mathematical Society, Vol. 135, Núm. 12, pp. 3837-3846

2006

  1. Blow-up for a degenerate diffusion problem not in divergence form

    Indiana University Mathematics Journal, Vol. 55, Núm. 3, pp. 955-974

  2. Classification of blow-up with nonlinear diffusion and localized reaction

    Journal of Differential Equations, Vol. 231, Núm. 1, pp. 195-211

  3. Non-simultaneous quenching in a system of heat equations coupled at the boundary

    Zeitschrift fur Angewandte Mathematik und Physik, Vol. 57, Núm. 4, pp. 586-594

  4. The interfaces of an inhomogeneous porous medium equation with convection

    Communications in Partial Differential Equations, Vol. 31, Núm. 4, pp. 497-514

2005

  1. Numerical Blow-up for the p-Aplacian Equation with a Source

    Computational Methods in Applied Mathematics, Vol. 5, Núm. 2, pp. 137-154

  2. On the quenching set for a fast diffusion equation: Regional quenching

    Royal Society of Edinburgh - Proceedings A, Vol. 135, Núm. 3, pp. 585-601

2004

  1. Approximation monotone des fonctions de Green

    Comptes Rendus Mathematique, Vol. 339, Núm. 6, pp. 395-400