DANIEL
AZAGRA RUEDA
Catedrático de universidad
JUAN
FERRERA CUESTA
Profesor emérito
Publicacions en què col·labora amb JUAN FERRERA CUESTA (12)
2018
-
Subdifferentiable functions satisfy Lusin properties of class C1 or C2
Journal of Approximation Theory, Vol. 230, pp. 1-12
-
The Morse-Sard Theorem revisited
Quarterly Journal of Mathematics, Vol. 69, Núm. 3, pp. 887-913
2017
-
Nonsmooth Morse–Sard theorems
Nonlinear Analysis, Theory, Methods and Applications, Vol. 160, pp. 53-69
2008
-
Fixed points and zeros for set valued mappings on riemannian manifolds: A subdifferential approach
Set-Valued Analysis, Vol. 16, Núm. 5-6, pp. 581-596
-
Viscosity solutions to second order partial differential equations on Riemannian manifolds
Journal of Differential Equations, Vol. 245, Núm. 2, pp. 307-336
2007
-
Applications of proximal calculus to fixed point theory on Riemannian manifolds
Nonlinear Analysis, Theory, Methods and Applications, Vol. 67, Núm. 1, pp. 154-174
-
Smooth approximation of Lipschitz functions on Riemannian manifolds
Journal of Mathematical Analysis and Applications, Vol. 326, Núm. 2, pp. 1370-1378
2006
-
A maximum principle for evolution Hamilton-Jacobi equations on Riemannian manifolds
Journal of Mathematical Analysis and Applications, Vol. 323, Núm. 1, pp. 473-480
2005
-
Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds
Journal of Functional Analysis, Vol. 220, Núm. 2, pp. 304-361
-
Proximal calculus on Riemannian manifolds
Mediterranean Journal of Mathematics, Vol. 2, Núm. 4, pp. 437-450
2003
-
Approximate Rolle's theorems for the proximal subgradient and the generalized gradient
Journal of Mathematical Analysis and Applications, Vol. 283, Núm. 1, pp. 180-191
2002
-
Every closed convex set is the set of minimizers of some C∞-smooth convex function
Proceedings of the American Mathematical Society