JORGE
REÑE ESPINOSA
Investigador contratado
University of Cambridge
Cambridge, Reino UnidoPublicacións en colaboración con investigadores/as de University of Cambridge (35)
2023
-
A Deep Potential model for liquid-vapor equilibrium and cavitation rates of water
Journal of Chemical Physics, Vol. 158, Núm. 18
-
Direct Calculation of the Interfacial Free Energy between NaCl Crystal and Its Aqueous Solution at the Solubility Limit
Physical Review Letters, Vol. 130, Núm. 11
-
Location and Concentration of Aromatic-Rich Segments Dictates the Percolating Inter-Molecular Network and Viscoelastic Properties of Ageing Condensates
Advanced Science, Vol. 10, Núm. 25
-
On the possible locus of the liquid-liquid critical point in real water from studies of supercooled water using the TIP4P/Ice model
Journal of Chemical Physics, Vol. 158, Núm. 20
-
Principles of assembly and regulation of condensates of Polycomb repressive complex 1 through phase separation
Cell Reports, Vol. 42, Núm. 10
-
Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently
Biophysical Journal, Vol. 122, Núm. 14, pp. 2973-2987
-
The Chromatin Regulator HMGA1a Undergoes Phase Separation in the Nucleus**
ChemBioChem, Vol. 24, Núm. 1
-
The liquid-to-solid transition of FUS is promoted by the condensate surface
Proceedings of the National Academy of Sciences of the United States of America, Vol. 120, Núm. 33
-
Time-Dependent Material Properties of Aging Biomolecular Condensates from Different Viscoelasticity Measurements in Molecular Dynamics Simulations
Journal of Physical Chemistry B, Vol. 127, Núm. 20, pp. 4441-4459
2022
-
Aging can transform single-component protein condensates into multiphase architectures
Proceedings of the National Academy of Sciences of the United States of America, Vol. 119, Núm. 26
-
Alternating one-phase and two-phase crystallization mechanisms in octahedral patchy colloids
The Journal of chemical physics, Vol. 157, Núm. 13, pp. 134501
-
Homogeneous ice nucleation rates for mW and TIP4P/ICE models through Lattice Mold calculations
Journal of Chemical Physics, Vol. 157, Núm. 9
-
Kinetic interplay between droplet maturation and coalescence modulates shape of aged protein condensates
Scientific Reports, Vol. 12, Núm. 1
-
Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it
Nature Communications, Vol. 13, Núm. 1
-
RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins
PLoS Computational Biology, Vol. 18, Núm. 2
-
Surface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates
Nano Letters, Vol. 22, Núm. 2, pp. 612-621
2021
-
Fccvs.hcp competition in colloidal hard-sphere nucleation: On their relative stability, interfacial free energy and nucleation rate
Physical Chemistry Chemical Physics, Vol. 23, Núm. 35, pp. 19611-19626
-
Parasitic crystallization of colloidal electrolytes: growing a metastable crystal from the nucleus of a stable phase
Soft Matter, Vol. 17, Núm. 3, pp. 489-505
-
Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy
Nature Computational Science, Vol. 1, Núm. 11, pp. 732-743
-
Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions
Nature Communications, Vol. 12, Núm. 1