PHILLIPO LAPPICY
LEMOS GOMES
Investigador postdoctoral
Universidade de São Paulo
São Paulo, BrasilPublications in collaboration with researchers from Universidade de São Paulo (13)
2025
-
A unified theory for inertial manifolds, saddle point property and exponential dichotomy
Journal of Differential Equations, Vol. 416, pp. 1462-1495
2024
-
An energy formula for fully nonlinear degenerate parabolic equations in one spatial dimension
Mathematische Annalen, Vol. 389, Núm. 4, pp. 4125-4147
-
Unbounded Sturm attractors for quasilinear parabolic equations
Proceedings of the Edinburgh Mathematical Society, Vol. 67, Núm. 2, pp. 542-565
2023
-
Sturm attractors for fully nonlinear parabolic equations
Revista matemática complutense, Vol. 36, Núm. 3, pp. 725-747
2022
-
Chaos in spatially homogeneous Hořava-Lifshitz subcritical cosmologies
Classical and Quantum Gravity, Vol. 39, Núm. 13
2021
-
Ginzburg–Landau patterns in circular and spherical geometries: Vortices, spirals, and attractors∗
SIAM Journal on Applied Dynamical Systems, Vol. 20, Núm. 4, pp. 1959-1984
2020
-
A Symmetry Property for Fully Nonlinear Elliptic Equations on the Sphere
Bulletin of the Brazilian Mathematical Society, Vol. 51, Núm. 2, pp. 671-680
-
Correction to: Sturm Attractors for Quasilinear Parabolic Equations with Singular Coefficients (Journal of Dynamics and Differential Equations, (2020), 32, 1, (359-390), 10.1007/s10884-018-9720-9)
Journal of Dynamics and Differential Equations
-
Sturm Attractors for Quasilinear Parabolic Equations with Singular Coefficients
Journal of Dynamics and Differential Equations, Vol. 32, Núm. 1, pp. 359-390
2019
-
A Lyapunov function for fully nonlinear parabolic equations in one spatial variable
Sao Paulo Journal of Mathematical Sciences, Vol. 13, Núm. 1, pp. 283-291
-
Space of initial data for self-similar Schwarzschild solutions of the Einstein equations
Physical Review D, Vol. 99, Núm. 4
2018
-
Slowly non-dissipative equations with oscillating growth
Portugaliae Mathematica, Vol. 75, Núm. 3-4, pp. 313-327
-
Sturm attractors for quasilinear parabolic equations
Journal of Differential Equations, Vol. 265, Núm. 9, pp. 4642-4660