Análisis Matemático Matemática Aplicada
Departamento
Max Planck Institute of Quantum Optics
Garching bei München, AlemaniaPublicaciones en colaboración con investigadores/as de Max Planck Institute of Quantum Optics (37)
2023
-
Collective Monte Carlo updates through tensor network renormalization
SciPost Physics, Vol. 14, Núm. 5
2021
-
Matrix product states and projected entangled pair states: Concepts, symmetries, theorems
Reviews of Modern Physics, Vol. 93, Núm. 4
2020
-
Probing Thermalization through Spectral Analysis with Matrix Product Operators
Physical Review Letters, Vol. 124, Núm. 10
2019
-
Mathematical open problems in projected entangled pair states
Revista matemática complutense, Vol. 32, Núm. 3, pp. 579-599
2018
-
Localization with random time-periodic quantum circuits
Physical Review B, Vol. 98, Núm. 13
-
Normal projected entangled pair states generating the same state
New Journal of Physics, Vol. 20, Núm. 11
2017
-
Matrix product density operators: Renormalization fixed points and boundary theories
Annals of Physics, Vol. 378, pp. 100-149
-
Matrix product unitaries: Structure, symmetries, and topological invariants
Journal of Statistical Mechanics: Theory and Experiment, Vol. 2017, Núm. 8
2016
-
Constructing topological models by symmetrization: A projected entangled pair states study
Physical Review B, Vol. 94, Núm. 15
2014
-
Frustration Free Gapless Hamiltonians for Matrix Product States
Communications in Mathematical Physics, Vol. 333, Núm. 1, pp. 299-333
2013
-
Entanglement, fractional magnetization, and long-range interactions
Physical Review B - Condensed Matter and Materials Physics, Vol. 87, Núm. 3
-
Robustness in projected entangled pair states
Physical Review B - Condensed Matter and Materials Physics, Vol. 88, Núm. 11
-
Topological order in the projected entangled-pair states formalism: Transfer operator and boundary hamiltonians
Physical Review Letters, Vol. 111, Núm. 9
2012
-
Gapless hamiltonians for the toric code using the projected entangled pair state formalism
Physical Review Letters, Vol. 109, Núm. 26
-
Matrix product states with long-range localizable entanglement
Physical Review A - Atomic, Molecular, and Optical Physics, Vol. 86, Núm. 6
-
Order parameter for symmetry-protected phases in one dimension
Physical Review Letters, Vol. 109, Núm. 5
-
Resonating valence bond states in the PEPS formalism
Physical Review B - Condensed Matter and Materials Physics, Vol. 86, Núm. 11
-
Topological and entanglement properties of resonating valence bond wave functions
Physical Review B - Condensed Matter and Materials Physics, Vol. 86, Núm. 1
2011
-
Classifying quantum phases using matrix product states and projected entangled pair states
Physical Review B - Condensed Matter and Materials Physics, Vol. 84, Núm. 16
2010
-
A quantum version of Wielandt's inequality
IEEE Transactions on Information Theory, Vol. 56, Núm. 9, pp. 4668-4673