Estudio y factorización de ideales completos en anillos locales

  1. Tostón Valdés, Eduardo
unter der Leitung von:
  1. Antonio Campillo López Doktorvater/Doktormutter

Universität der Verteidigung: Universidad Complutense de Madrid

Fecha de defensa: 30 von Oktober von 2002

Gericht:
  1. Jesús María Ruiz Sancho Präsident
  2. Julio Castellano Peñuela Sekretär/in
  3. Alejandro Melle Hernández Vocal
  4. Félix Delgado de la Mata Vocal
  5. Gerardo González-Sprinberg Vocal

Art: Dissertation

Zusammenfassung

En el capítulo II del libro IV de Enriques-Chisini (1915) se hace un estudio de los sistemas de curvas planas que pasan por un conjunto finito de puntos base con multiplicidades asignadas. Veinte años después, Zariski desarrolla una teoria aritmética paralela a la teoría geométrica de puntos infinitamente próximos en el caso de superficies lisas. El objeto de la Memoria es encontrar una clase amplia de ideales completos en Los que los resultados de Zariski se puedan generalizar a dimensión arbitraria. Una vez probada la utilidad de los ideales monomiales de la clase citada la pregunta natural es averiguar la complejidad algebraica de los mismos, es decir, entender sus sistemas minimales de generadores y sus módulos de sicigias. En la Memoria se calculan dichos sistemas minimales y a través de sus resolución libre minimal los módulos de sicigias y los números de Betti.