On the existence of smooth components of the moduli scheme of rank 2 stable reflexive sheaves on P^3

  1. Gurrola Pérez, Pedro
Dirigida per:
  1. Rosa María Miró-Roig Director/a

Universitat de defensa: Universitat de Barcelona

Any de defensa: 1993

Tribunal:
  1. Eduardo Casas Alvero President/a
  2. Fernando José Serrano García Secretari/ària
  3. Antonio Campillo López Vocal
  4. Andre Hirschowitz Vocal
  5. Ignacio Sols Lucia Vocal

Tipus: Tesi

Teseo: 41723 DIALNET

Resum

DENTRO DEL AREA DE LA GEOMETRIA ALGEBRAICA, UNO DE LOS PROBLEMAS DE MAYOR INTERES ES EL LLAMADO PROBLEMA DE "MODULI", ESTA MEMORIA ESTA DEDICADA AL ESTUDIO DEL ESPACIO DE MODULI M(2;C1,C2,C3) QUE PARAMETRIZA FUNTORIALMENTE LAS CLASES DE ISOMORFIA DE HACES REFLEXIVOS ESTABLES DE RANGO 2 SOBRE P3 CON CLASES DE CHERN C1, C2 Y C3. EN PARTICULAR, DEMOSTRAMOS QUE "PARA "CASI TODOS" LOS POSIBLES VALORES C1, C2, C3, EL ESQUEMA DE MODULI M(2;C1,C2,C3) POSEE UNA COMPONENTE GENERICAMENTE LISA. PARA OBTENER ESTE RESULTADO SE UTILIZA LA CORRESPONDENCIA DE SERRE Y LA TEORIAS DE ALISAMIENTO DE CURVAS NODALES.