On the existence of smooth components of the moduli scheme of rank 2 stable reflexive sheaves on P^3
- Gurrola Pérez, Pedro
- Rosa María Miró-Roig Zuzendaria
Defentsa unibertsitatea: Universitat de Barcelona
Defentsa urtea: 1993
- Eduardo Casas Alvero Presidentea
- Fernando José Serrano García Idazkaria
- Antonio Campillo López Kidea
- Andre Hirschowitz Kidea
- Ignacio Sols Lucia Kidea
Mota: Tesia
Laburpena
DENTRO DEL AREA DE LA GEOMETRIA ALGEBRAICA, UNO DE LOS PROBLEMAS DE MAYOR INTERES ES EL LLAMADO PROBLEMA DE "MODULI", ESTA MEMORIA ESTA DEDICADA AL ESTUDIO DEL ESPACIO DE MODULI M(2;C1,C2,C3) QUE PARAMETRIZA FUNTORIALMENTE LAS CLASES DE ISOMORFIA DE HACES REFLEXIVOS ESTABLES DE RANGO 2 SOBRE P3 CON CLASES DE CHERN C1, C2 Y C3. EN PARTICULAR, DEMOSTRAMOS QUE "PARA "CASI TODOS" LOS POSIBLES VALORES C1, C2, C3, EL ESQUEMA DE MODULI M(2;C1,C2,C3) POSEE UNA COMPONENTE GENERICAMENTE LISA. PARA OBTENER ESTE RESULTADO SE UTILIZA LA CORRESPONDENCIA DE SERRE Y LA TEORIAS DE ALISAMIENTO DE CURVAS NODALES.