Estudio comparativo de la toxicidad del metilmercurio, cadmio (II) y cromo (VI) en cultivos primarios de neuronas y astrocitos de rata

  1. Uroz Martínez, V. 2
  2. Anadón Baselga, María José 2
  3. Capó Martí, Miguel Andrés 1
  1. 1 Departamento de Toxicología Y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid
  2. 2 Departamento de Toxicología Y Legislación Sanitaria, Facultad de Medicina, Universidad Complutense de Madrid
Journal:
Revista de toxicología

ISSN: 0212-7113

Year of publication: 2008

Volume: 25

Issue: 1-3

Pages: 56-60

Type: Article

More publications in: Revista de toxicología

Abstract

This study aims to compare letal concentration 50 (LC , toxic dose causing death of 50% of the cells) of methylmercury, 50 cadmium (II) and chromium (VI) in primary cultures of rat cortex. Cerebral hemispheres of rat were used to prepare the primary cultures. The neuronal primary cultures were performed from embryonic Wistar rats of 14-16 days of gestation in Dulbecco's modification of Eagle's medium. Astrocytes primary cultures were prepared with neonatal Wistar rats in Waymouth´s medium. Methylene blue and trypan blue staining were used to assess neuronal death with cytometry. LC for both neurons and astrocytes were 50 calculated by means of Reed-Muench method. The main results were: -6 LC in 24-hour culture of neurons was 5 x 10 M for methylmercury, 50 -6 -6 3.7 x 10 M for cadmium (II) and 5.34 x 10 M for chromium (VI). -5 LC in 24-hour cultures of astrocytes was of 1.46 x 10 M for 50 -5 -5 methylmercury, 3.73 x 10 M for cadmium (II) and 2.46 x 10 M for chromium (VI). These results demonstrate that astrocytes are approximately ten times more resistant than neurons for the three toxic compounds.

Bibliographic References

  • Aschner M, Mullaney KJ, Fehm M, Wagoner DE Jr, Vitarella D (1994) Astrocytes as potential modulators of mercuric chloride neurotoxicity. Cell Mol Neurobiol 14: 637-652.
  • ATSDR (2000) Toxicological profile for chromium. Department of Health and Human Services, Public Health Service. Atlanta, Georgia: U.S.
  • Barceloux DG (1999) Chromium. J Toxicol Clin Toxicol 37: 173-194.
  • Capo MA, Alonso CE, Sevil MB, Frejo MT (1994) "In vitro" effects of methyl-mercury on the nervous system: a neurotoxicologic study. J Environ Pathol Toxicol Oncol 13: 117-123.
  • Capo MA, Frejo MT, Sevil B (1997) The use of the glial fibrillary acidic protein (GFAP) biomarker as an early detection model of chemically induced cancer. J Environ Pathol Toxicol Oncol 16: 33-39.
  • Capó MA, Palencia M (1998) Sistemática en la preparación de cultivos en células nerviosas. Animales de experimentación. La revista hispanoamericana 13: 18-23.
  • Capó MA, Sevil B, Frejo MT, Anadón-Baselga MJ, Alonso CE (1994) In vitro neuronal changes induced by beta-aminopropionitrile. J Environ Pathol Toxicol Oncol 13: 259-264.
  • Capó MA, Sevil MB, López ME, Frejo MT (1993) Ethylene glycol action on neurons and its cholinomimetic effects. J Environ Pathol Toxicol Oncol 12: 155-159.
  • Ferrer A (2003) Intoxicaciones por metales. An Sist Sanit Navar 26 suppl 1: 141-153.
  • Fischer AB (1976) Heavy metal toxicity in mammalian cell cultures. Zentralbl Bakteriol 162: 77-84.
  • Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull: 167-182.
  • Lauwerys RR (2003) Toxicologie industrielle et intoxications professionnelles. Masson: 4a ed. París.
  • Magos L, Clarkson TW (2006) Overview of the clinical toxicity of mercury. Ann Clin Biochem 43: 257-268.
  • Miura K, Himeno S, Koide N, Imura N (2000) Effects of methylmercury and inorganic mercury on the growth of nerve fibers in cultured chick dorsal root ganglia. Tohoku J Exp Med 192: 195-210.
  • Morken TS, Sonnewald U, Aschner M, Syversen T (2005). Effects of methylmercury on primary brain cells in mono- and co-culture. Toxicol Sci 87: 169-75.
  • Park ST, Lim KT, Chung YT, Kim SU (1996) Methylmercury-induced neurotoxicity in cerebral neuron culture is blocked by antioxidants and NMDA receptor antagonists. Neurotoxicology 17: 37-45.
  • Pettmann B, Delaunoy JP, Courageot J, Devilliers G, Sensenbrenner M (1980) Rat brain glial cells in culture: effects of brain extracts on the development of oligodendroglia-like cells. Dev Biol 75: 278-287.
  • Pinedo I, Anadón MJ, Capó MA, De Guevara J (1999) Estudio in vitro del efecto neurotoxicológico del cadmio. Rev Toxicol 16: 184.
  • Sakaue M, Takanaga H, Adachi T, Hara S, Kunimoto M (2003) Selective disappearance of an axonal protein, 440-kda ankyrinb, associated with neuronal degeneration induced by methylmercury. J Neurosci Res 73: 831-839.
  • Sanfeliu C, Sebastia J, Ki SU (2001) Methylmercury neurotoxicity in cultures of human neurons, astrocytes, neuroblastoma cells. Neurotoxicology 22: 317-327.
  • Sarafian TA, Cheung MK, Verity MA (1984) In vitro methyl mercury inhibition of protein synthesis in neonatal cerebellar perikarya. Neuropathol Appl Neurobiol 10: 85-100.
  • Toimela T, Tahti H (2004) Mitochondrial viability and apoptosis induced by aluminum, mercuric mercury and methylmercury in cell lines of neural origin. Arch Toxicol 78: 565-574.
  • Toimela T, Tahti, H (2004) Mitochondrial viability and apoptosis induced by aluminum, mercuric mercury and methylmercury in cell lines of neural origin. Arch Toxicol 78: 565-574.
  • Turner RA (1965) Screening methods in pharmacology. Academic Press, inc. Ltd. Londres.
  • Wang XF, Cynader MS (2001) Pyruvate released by astrocytes protects neurons from copper-catalyzed cysteine neurotoxicity. J Neurosci 21: 3322-3331.
  • Waymouth C (1970) Osmolarity of mammalian blood and media for culture of mammalian cells. In vitro 6: 109-127.