Dificultades, conflictos, errores y obstáculos epistemológicos en la identificación visual del resto de la división con números decimales
- Ana Belén Cabello Pardos 1
- Mª Isabel Rodríguez Cartagena 1
- Martín M. Garbayo Moreno 1
- Mercedes Hidalgo Herrero 1
- 1 Facultad de Educación Universidad Complutense de Madrid, España
ISSN: 1131-9321, 2340-714X
Año de publicación: 2014
Número: 87
Páginas: 55-70
Tipo: Artículo
Otras publicaciones en: Epsilon: Revista de la Sociedad Andaluza de Educación Matemática "Thales"
Resumen
En este trabajo se muestra que la identificación visual del resto de la división de números decimales, como si se tratase de una división de números naturales, constituye un obstáculo epistemológico. La investigación se ha realizado con una muestra de 151 alumnos de Secundaria y Bachillerato en la Comunidad de Madrid. En primer lugar se han analizado las dificultades, errores y conflictos que manifiestan los alumnos en la tarea de identificación del resto y en la realización de la prueba de la división. A partir de dicho análisis, se han verificado las características que definen el obstáculo epistemológico. Finalmente, se realiza una propuesta metodológica para franquear el obstáculo basada en imágenes conceptuales correctas.
Referencias bibliográficas
- Artigue, M. (1990). Epistémologie et didactique. Reserches en Didactique des Mathématiques, 10 (23), 241-286.
- Bachelard, G. (1938). La formation de l’esprit scientifique. Paris: Vrin.
- Brousseau, G. (1976). Les obstacles épistémologiques et les problèmes en mathématiques. Comptes-rendus de la XXVIII rencontre de la CIEAEM, Belgique, 101-107.
- Brousseau, G. (1980). Problèmes de l’enseignement des décimaux. Reserches en Didactique des Mathématiques, 1 (1), 11-59.
- Brousseau, G. (1981). Problèmes de didactique des décimaux. Reserches en Didactique des Mathématiques, 2 (1), 37-127.
- Brousseau, G. (1983). Les obstacles épistémologiques et les problèmes en mathématiques . Reserches en Didactique des Mathématiques, 4 (2), 165-198.
- Brousseau, G. (1989). Les obstacles épistémologiques et la didactique des mathématiques. En N. Bednarz, & C. Garnier, Construction des savoirs, Obstacles et Conflits (págs. 41-63). Montréal: CIRADE Les éditions Agence d’Arc inc.
- Brousseau, G. (2007). Iniciación al estudio de la teoría de las situaciones didácticas. Buenos Aires: Libros del Zorzal.
- Cabello, A. B., Rodríguez, M. I., Garbayo, M. M., e Hidalgo, M. (2014). La identificación visual del resto de la división de números decimales como obstáculo epistemológico. XV Congreso de Enseñanza y Aprendizaje de las Matemáticas. Baeza: (Pendiente de edición).
- Castro, E. (2001). Números decimales. En E. Castro, Didáctica de la Matemática en la Educación Primaria (págs. 315-345). Madrid: Síntesis.
- Centeno, J. (1988). Números decimales. ¿Por qué? ¿Para qué? Madrid: Síntesis.
- Cid, E. (2000). Obstáculos epistemológicos en la enseñanza de los números negativos. ACTAS DEL XIV SEMINARIO INTERUNIVERSITARIO DE INVESTIGACIÓN EN DIDÁCTICA DE LAS MATEMÁTICAS (SIIDM). Pontevedra. Obtenido de http://www.ugr.es/~jgodino/siidm/boletin10.htm
- Llinares, S. (2003). Matemáticas escolares y competencia matemática. En M. C. Chamorro,Didáctica de las Matemáticas (págs. 3-29). Madrid: Pearson Educación.
- Pereda, S. (1987). Psicología Experimental. I Metodología. Madrid: Pirámide.
- Rey-Pastor, J. (1981). Elementos del Análisis Algebraico. Madrid: Euler libros-Gómez Puig Ediciones.
- Rico, L. (1997). Reivindicación del Error en el Aprendizaje de las Matemáticas. Revista Épsilon, 38, 185- 198.
- Rojas, N., y Flores, P. (2010). Experiencia de reflexión docente: el resto de la división. En J. Berral, M. De la Fuente, & F. España, Actas del XIII Congreso de Enseñanza y Aprendizaje de las Matemáticas: Matemáticas para observar y actuar (págs. 522-529). Córdoba: Sociedad Andaluza de Educación Matemática THALES.
- Ruiz, L. (2004). Construcción de los números decimales en la Escuela Primaria. De las fracciones a la notación decimal. Números, formas y volúmenes en el entorno del niño (págs.189-232). Madrid: MEC.
- Ruiz, L., y García, F. (2009). Arithmetica Practica y Specvlativa de J. Pérez de Moya (1513-1596). Análisis epistemológico y didáctico. Llull: Revista de la Sociedad Española de Historia de las Ciencias y de las Técnicas, 103-134.
- Tall, D., and Vinner, S. (1981). Concept Image and Concept Definition in Mathematics with particular reference to Limits and Continuity. Educational Studies in Mathematics, 12, 151–169.
- Vinner, S. (1975). The Naive Platonic Approach as a Teaching Strategy in Arithmetics. Educational Studies in Mathematics, 6, 339-350.
- Vinner, S. (1983). Concept definition, concept image and the notion of function. International Journal of Mathematical Education in Science an d Technology Vol 14, 293-305.
- Vosniadou, S. (2013). International Handbook of Research on Conceptual Change. New York: Routledge.