Un análisis didáctico de la práctica docente en la enseñanza de la lectura del reloj analógico

  1. Noemí Pizarro 1
  2. Juan Miguel Belmonte 2
  3. Blanca Arteaga-Martínez 3
  1. 1 Universidad Metropolitana de Ciencias de la Educación, Chile
  2. 2 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  3. 3 Universidad de Alcalá
    info

    Universidad de Alcalá

    Alcalá de Henares, España

    ROR https://ror.org/04pmn0e78

Revista:
Educación XX1: Revista de la Facultad de Educación

ISSN: 1139-613X 2174-5374

Any de publicació: 2020

Volum: 23

Número: 1

Pàgines: 409-436

Tipus: Article

DOI: 10.5944/EDUCXX1.23913 DIALNET GOOGLE SCHOLAR lock_openAccés obert editor

Altres publicacions en: Educación XX1: Revista de la Facultad de Educación

Objectius de Desenvolupament Sostenible

Resum

The construction of specialised mathematical knowledge for teaching time as a magnitude, is a complex activity that has not yet been studied in depth. In this article we present an approach to this problem from the classroom practice, describing and analysing some aspects of the content and nature of the knowledge of two primary school teachers when working on the measurement of time with their students. We have adopted a qualitative methodology, and three moments of the teachers’ interventions have been considered as a reflective action research cycle: for practice, in practice and on practice. To this end, planning and intervention sessions have been recorded for two primary school teachers and their actions have been interpreted in consideration of the analytical model Mathematics Teachers’ Specialised Knowledge (MTSK). This analysis has revealed that teachers are aware of the complexity of dealing with the reading and recording of time when they plan their intervention, and therefore they recognize the need to teach how to use the clock. Our first findings point out the need to provide the students with references for the units of time and to emphasize the functioning of the measuring instrument, questioning the usefulness of the analogue clock.

Informació de finançament

Esta investigación ha sido posible gracias al Programa “Giner de los Ríos” para el curso 2018/2019 de la Universidad de Alcalá (España) y al proyecto APIX 18-08 de la Universidad Metropolitana de Ciencias de la Educación (Chile).

Finançadors

Referències bibliogràfiques

  • Adler, J., Ball, D., Krainer, K, Lin F.L., & Novotna, J. (2005). Reflections on an emerging field: Researching mathematics teacher education. Educational Studies in Mathematics, 60, 359-381. 0.1007/s10649-005-5072-6
  • Andrews, P., Carrillo, J., y Climent, N. (2005). Proyecto “METE” (Mathematics Education Traditions of Europe): el foco matemático. En A. Maz, B. Gómez, y M. Torralbo (eds). Investigación en Educación Matemática. IX Simposio de la SEIEM (pp. 131-137). Córdoba: Universidad de Córdoba.
  • Beltrán-Pellicer, P., y Giacomone, B. (2018). Desarrollando la competencia de análisis y valoración de la idoneidad didáctica en un curso de posgrado mediante la discusión de la de una experiencia de enseñanza. REDIMAT, Journal of Research in Mathematics Education, 7(2), 111-133. 10.17583/redimat.2018.2516
  • Boulton-Lewis, G., Wilss, L., & Mutch, S. (1997). Analysis of primary school children’s abilities and strategies for reading and recording time from analogue and digital clocks. Mathematics Education Research Journal, 9, 136-151. 10.1007/bf03217308
  • Burny, E., Valcke, M., & Desoete, A. (2012). Clock reading: An underestimated topic in children with mathematics difficulties. Journal of learning disabilities, 45(4), 351-360. 10.1177/0022219411407773
  • Carrillo, J., Climent, N., Montes, M., Contreras, L.C., Flores-Medrano, E., Escudero-Ávila, D., Vasco, D., Rojas, N., Flores, P., Aguilar-González, A., Ribeiro, M., & Muñoz-Catalán, M. (2018). The mathematics teacher’s specialised knowledge (MTSK) model. Research in Mathematics Education, 20(3), 236-253. 10.1080/14794802.2018.1479981
  • Chamorro, M. (2003). Didáctica de las Matemáticas. Madrid: Pearson-Prentice Hall.
  • Charles, R., Caldwell, J., Cavanagh, M., Chancellor, D., Copley, J., Crown, W… (2014a). Matemática 3° Educación Básica. Texto del estudiante [Texto traducido y editado para el Ministerio de Educación]. Santiago de Chile, Chile: Pearson.
  • Charles, R., Caldwell, J., Cavanagh, M., Chancellor, D., Copley, J., Crown, W… (2014b). Matemática 3° Educación Básica. Cuaderno de ejercicios 4 [Texto traducido y editado para el Ministerio de Educación]. Santiago de Chile, Chile: Pearson.
  • Clements, D., & Sarama, J. (2009). Early childhood mathematics education research: Learning trajectories for young children. New York, USA: Routledge. 10.4324/9780203883785
  • Darling-Hammond, L., & Bransford, J. (2005). Preparing Teachers for a changing world. What teachers should learn and be able to do. San Francisco, USA: Jossey Bass. 10.5860/choice.43-1083
  • Earnest, D. (2017). Clock Work: How Tools for Time Mediate Problem Solving and Reveal Understanding. Journal for Research in Mathematics Education, 48 (2), 191-223. 10.5951/jresematheduc.48.2.0191
  • English, L.D., & Kirshner, D. (2016). Changing agendas in international research in mathematics education. In L.D. English, & D. Kirshner (Eds.), Handbook of international research in mathematics education (Third, pp. 3–18). New York, USA: Routledge. 10.4324/9780203448946
  • Erickson, F. (2006) Definition and analysis of data from videotape: some research procedures and their rationales. In J. Green, G. Camili, & P. Elmore (Eds.). Handbook of complementary methods in education research (pp. 177-191). Washington, D.C: American Educational Research Association. 10.4324/9780203874769
  • Fraisse, P. (1967). Psychologie du temps. Paris, France: PUF.
  • Friedman, W.J., & Laycock, F. (1989). Childrens Analog and Digital Clock Knowledge. Child Development, 60(2), 357-371. 10.2307/1130982
  • Friedman, W.J. (1990). About time: inventing the fourth dimension. Cambridge, MA, USA: MIT Press. Hargreaves, A., y Fullan, M. (2014).
  • Capital Profesional. Madrid: Morata. Hodkinson, A. (2004). Does the English Curriculum for History and its Schemes of Work effectively promote primary-aged children’s assimilation of the concepts of historical time? Some observations based on current research. Educational Research, 46(2), 99-117. 10.1080/0013188042000222403
  • Kamii, C., & Long, K. (2003). The measurement of time: Transitivity, unit iteration, and conservation of speed. In D.H. Clements & G. Bright (Eds.), Learning and teaching measurement (pp. 169–180). Reston, VA, USA: NCTM.
  • Killion, J., y Todnem, G. (1991) A process for personal theory building. Educational Leadership, 48 (6), 14-16.
  • König, J., Blömeke, S., y Kaiser, G. (2015). Early career mathematics teachers general pedagogical knowledge and skills: do teacher education, teaching experience, and working conditions make a difference? International Journal of Science and Mathematics Education, 13(2), 331– 350. 10.1007/s10763-015-9618-5
  • Korthagen, F., Kessels, J., Koster, B., Lagerwerf, B., & Wubbels, T. (2001). Linking Practice and Theory. New York, USA: Routledge. 10.4324/9781410600523
  • Merriam, S.B. (1998). Qualitative research and case study applications in education. San Francisco, CA, USA: Jossey-Bass.
  • Monroe, E. E., Orme, M. P., & Erickson, L.B. (2002). Working cotton: toward an understanding of time. Teaching children mathematics, 8, 475-479.
  • NCTM (2000). Principles and standards for school mathematics. Reston, VA
  • Piaget, J. (1971). La epistemología del tiempo. Buenos Aires, Argentina: El Ateneo.
  • Pirie, S. (1997). Chapter 11: Where Do We Go from Here? Journal for Research in Mathematics Education. Monograph, 9, 156-177. 10.2307/749953
  • Pizarro, N., Albarracín, L., y Gorgorió, N. (2018). Measurement estimation activities: The interpretation of Primary School teachers. Bolema: Boletim de Educação Matemática, 32(62), 1177-1197. 10.1590/1980-4415v32n62a21
  • Richie, D.M., & Bickhard, M.H. (1988). The ability to perceive duration: Its relation to the development of the logical concept of time. Developmental
  • Russell, K.A., y Kamii, C. (2012). Children’s Judgments of Durations: A Modified Replication of Piaget’s Study. School Science and Mathematics, 112(8), 476-482. 10.1111/j.1949-8594.2012.00166.x
  • Sfard, A. (2005). What could be more practical than good research? On mutual relation between research and practice of mathematics education. Educational Studies in Mathematics, 58(3), 393–413. 0.1007/s10649-005-4818-5
  • Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Research, 15(2), 4-14. 10.2307/1175860
  • Shulman, L. (1987). Knowledge and Teaching: Foundations of the New Reform. Harvard Educational Review, 57(1), 1–22. .17763/haer.57.1.j463w79r56455411
  • Thomas, M., Clarke, D.M., McDonough, A., & Clarkson, P. (2016). Understanding time: A research based framework. In B. White, M. Chinnappan, & S. Trenholm (Eds.). Opening up mathematics education research. Proceedings of the 39th annual conference of the Mathematics Education Research Group of Australasia, (pp. 592-599). Adelaide, Australia: MERGA.
  • Van Steenbrugge, H., Valcke, M., & Desoete, A. (2010). Mathematics learning difficulties in primary education: teachers’ professional knowledge and the use of commercially available learning packages. Educational Studies, 36(1), 59-71. 10.1080/03055690903148639