Functional foods as an alternative to increase the consumption of dietary fiber and proanthocyanidins. Possible effects on the gut microbiota

  1. Saldaña Cejudo, Paloma 1
  2. Bastida, Sara 2
  3. Macho-González, Adrián 2
  4. Sánchez-Muniz, Francisco José 2
  1. 1 Departamento de Nutrición y Ciencia de los Alimentos. Facultad de Farmacia. Universidad Complutense de Madrid. España
  2. 2 Departamento de Nutrición y Ciencia de los Alimentos. Facultad de Farmacia. Universidad Complutense de Madrid. España. Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC). España
Journal:
Journal of Negative and No Positive Results: JONNPR

ISSN: 2529-850X

Year of publication: 2020

Volume: 5

Issue: 12

Pages: 1575-1598

Type: Article

DOI: 10.19230/JONNPR.3990 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Journal of Negative and No Positive Results: JONNPR

Abstract

Introduction. Dietary fiber is an essential nutritional component, which, its modulating action on gut microbiota must be outlined. The consumption of foods of vegetable origin, and therefore, the dietary´s fiber  consumption, in Spain, as well as in some other countries, has been reduced. Functional foods have been  found to be a great food alternative to solve this dietary deficiency. Objectives. 1. To review dietary´s fiber concept. 2. To get to know the real consumption situation of dietary  fiber in Spain, in other European countries; in different age groups. 3. To study the main effects related to  dietary fiber consumption, particularly the effects of proanthocyanidins (PA) with respect to the gut  microbiome. 4. To revise functional foods concept, and the possibilities of incorporating dietary fiber and PA  into different highly consumed foods. Materials and methods. The main research support has been the PubMed database, although it has also been used Google Scholar, ResearchGate and SciELO. At the same time scientific articles, books and reports  from reliable and corroborated sources have been revised. In addition, official documents have been  consulted, as the 2018 Spanish Foods Consumption Report, published by the Spanish Ministry of Agricultura,  Pesca y Alimentación; the AESAN website, and the current food regulations. Results. It is proved that the real dietary fiber intakes in different European countries, including in Spain, are  far below the dietary reference intakes (DRI), in most of the studied age ranges. In this article, there are  proposed strategies to achieve these DRI, particularly adding dietary fiber into highly consumed foods (i.e.  meat matrices). The concept of functional foods is reviewed, and some of the most relevant publications  reporting the effects of PA in relationship to the gut microbiome recovery, and its change to another related  to the healthy people´s microbiome. The mechanisms by which the gut microbiome is able to hydrolyse the  PA, and consequently release metabolites with gut and systemic protective activity, is also discussed. Conclusions. Given that modifying the population consumption habits seems a difficult task, the alternative  of formulating functional foods enriched with dietary fiber and PA it is suggested. The increasing positive  evidence observed derived from the consumption of functional meat products to which carob fruit fiber has  been added, suggests the relevance of continuing investigating in this field, and therefore start the  formulation of new functional foods (i.e. cereals, creams, sweets, etc.) enriched with this PA-enriched fiber,  which would lead to an adequate dietary fiber consumption and the benefits from its functional functions.  

Bibliographic References

  • Gálvez Peralta J, Rodríguez Cabezas ME, Camuesco Pérez D. Capítulo 4 Fibra dietética. En: Tratado de Nutrición Gil A. ed. 3a. edición. Editorial Médica Panamericana. Barcelona, 2017.
  • Soliman GA. Dietary fiber, atherosclerosis, and cardiovascular disease. Nutrients 2019; 11(5):1155.
  • Fuller S, Beck E, Salman H, Tapsell L. New horizons for the study of dietary fiber and health: a review. Plant Foods Hum Nutr 2016; 71(1):1-12.
  • Jiménez-Escrig A, Sánchez-Muniz FJ. Dietary fibre from edible seaweeds: Chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutr Res 2000; 20(4):585-598.
  • Sánchez-Muniz FJ. Fibra dietética y salud cardiovascular. Nutr Hosp 2012; 27:40-54.
  • Etxeberria U, Milagro FI, González-Navarro CJ, Martinez JA. Role of gut microbiota in obesity. An Real Acad Farm 2016; 82(special issue): 234-259.
  • Redondo N, Nombela C, Marcos A. La microbiota intestinal y su relación con la obesidad. En: IV y V cursos avanzados sobre obesidad y síndrome metabólico. Sánchez Muniz FJ, Marcos Sánchez A, Martínez Hernández JA. (Organizadores). Real Academia Nacional de Farmacia, Madrid. 2018. pp. 389-411.
  • American Association of Cereal Chemists. The definition of dietary fiber. Cereals Foods World 2001. W-2001- 0222-01O. Seattle, WA.
  • Comisión del Codex Alimentarius. Roma (Italia). Informe de la 30a reunión del Comité del Codex sobre nutrición y alimentos para regímenes especiales. Ciudad del Cabo (Sudáfrica). 2009.
  • Ruiz-Roso B. Fibra dietética e inmunidad. En: I Curso Avanzado sobre Inmunonutrición. Marcos A y Sánchez- Muniz FJ (Organizadores), Real Academia Nacional de Farmacia, Madrid, 2017.
  • Vilcanqui-Pérez F, Vílchez-Perales C. Fibra dietaria: nuevas definiciones, propiedades funcionales y beneficios para la salud. Revisión. ALAN 2017; 67(2): 146-156.
  • Davis HC. Can the gastrointestinal microbiota be modulated by dietary fibre to treat obesity? Ir J Med Sci 2018; 187(2):393-402.
  • MetaHIT Consortium, Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, y col. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464(7285):59-65.
  • Simpson HL, Campbell BJ. Review article: dietary fibre-microbiota interactions. Aliment Pharmacol Ther 2015; 42(2):158-179.
  • Tap J, Furet J-P, Bensaada M, Philippe C, Roth H, Rabot S, y col. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults: gut microbiota richness and dietary fibre intake. Environ Microbiol 2015; 17(12):4954-4964.
  • Lin D, Peters BA, Friedlander C, Freiman HJ, Goedert JJ, Sinha R, Miller G, Bernstein M.A, Hayes R. B, Ahn J. Association of dietary fibre intake and gut microbiota in adults. Br J Nutr 2018; 20(9):1014-1022.
  • Shin N-R, Whon TW, Bae J-W. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 2015; 33(9):496-503.
  • European Food Safety Authority. Scientific opinion on dietary reference values for carbohydrates and dietary fibre. EFSA Journal 2010; 77.
  • García Gabarra A, Castellà Soley M, Calleja Fernández A. Ingestas de energía y nutrientes recomendadas en la Unión Europea: 2008-2016. Nutr Hosp 2017; 34(2):490.
  • Arija V, Pérez C, Martínez de Vitoria E, Ortega RM, Serra-Majem L. Valores de referencia de ingesta dietética y de antropometría en estudios poblacionales. Rev Esp Nutr Com 2015; 21(Supl.1)(2):157-167.
  • Macho-González A, Garcimartín A, López-Oliva M, Ruiz-Roso B, Martín de la Torre I, Bastida S, Benedí J. y Sánchez-Muniz F.J. Can carob-fruit-extract-enriched meat improve the lipoprotein profile, VLDL-oxidation, and LDL receptor levels induced by an atherogenic diet in STZ-NAD-diabetic rats? Nutrients 2019; 11(2):332.
  • Macho-González A, Garcimartín A, López-Oliva ME, Celada P, Bastida S, Benedí J, y Sánchez-Muniz FJ. Carob- fruit-extract-enriched meat modulates lipoprotein metabolism and insulin signaling in diabetic rats induced by high-saturated-fat diet. J Funct Foods 2020; 64:103600.
  • Macho-González A, Garcimartín A, Naes F, López-Oliva ME, Amores-Arrojo A, González-Muñoz MJ, Bastida S, Benedí J. y Sánchez-Muniz FJ. Effects of fiber purified extract of carob fruit on fat digestion and postprandial lipemia in healthy rats. J Agric Food Chem 2018; 6(26):6734-6741.
  • Macho-González A, Garcimartín A, López-Oliva ME, Bertocco G, Naes F, Bastida S, Benedí J. y Sánchez-Muniz FJ. Fiber purified extracts of carob fruit decrease carbohydrate absorption. Food Funct 2017; 8(6):2258-2265.
  • Bastida S, Sánchez-Muniz FJ, Olivero R, Pérez-Olleros L, Ruiz-Roso B, Jiménez-Colmenero F. Antioxidant activity of carob fruit extracts in cooked pork meat systems during chilled and frozen storage. Food Chem 2009; 116(3):748-754.
  • Macho-González A, Garcimartín A, López-Oliva ME, Bastida S, Benedí J, Ros G, Nieto G. Sánchez-Muniz FJ. Can meat and meat-products induce oxidative stress? Antioxidants 2020; 9(7):638.
  • Celada Rodríguez MP. Efectos del consumo de productos cárnicos modificados en sujetos con sobrepeso y dislipemia. Tesis Doctoral. Facultad de Farmacia. Universidad Complutense de Madrid. 2017.
  • Celada Rodríguez P, Sánchez-Muniz FJ. Alimentos funcionales. Rendimiento físico y deporte. En: Nutrición deportiva. Desde la Fisiología a la práctica. Capítulo 30. González Gross M. Ed. Panamericana, Madrid. 2020
  • Ashwell M. Concepts of functional foods. Brussels; Great Britain: ILSI Europe; 2002.
  • Macho-González A, Garcimartín A, López-Oliva ME, Benedí J, Bastida S, Sánchez-Muniz FJ. Inmunonutrición. Estilo de vida: Papel de las proantocianidinas sobre la microbiota, permeabilidad intestinal e inflamación. 2.a ed. Panamericana, Barcelona; 2020. pp. 245-266.
  • Alzate Tamayo LM, Arteaga González DM, Jaramillo Garcés Y. Propiedades farmacológicas del algarrobo (Hymenaea courbaril Linneaus) de interés para la industria de alimentos. Revista Lasallista Investigación 2009; 5(2):100-111.
  • Saura-Calixto F, Pérez-Jiménez J, Touriño S, Serrano J, Fuguet E, Torres JL, Goñi I. Proanthocyanidin metabolites associated with dietary fibre from in vitro colonic fermentation and proanthocyanidin metabolites in human plasma. Mol Nutr Food Res 2010; 54(7):939-946.
  • Choy YY, Quifer-Rada P, Holstege DM, Frese SA, Calvert CC, Mills DA, Lamuela-Raventos R.M, Waterhouse A. L. Phenolic metabolites and substantial microbiome changes in pig feces by ingesting grape seed proanthocyanidins. Food Funct 2014; 5(9):2298-2308.
  • Han M, Song P, Huang C, Rezaei A, Farrar S, Brown MA, Ma X. Dietary grape seed proanthocyanidins (GSPs) improve weaned intestinal microbiota and mucosal barrier using a piglet model. Oncotarget 2016; 7(49):80313- 80326.
  • Hereu M, Ramos-Romero S, Busquets C, Atienza L, Amézqueta S, Miralles-Pérez B, Nogués MR, Méndez L, Medina I, Torres JL. Effects of combined d-fagomine and omega-3 PUFAs on gut microbiota subpopulations and diabetes risk factors in rats fed a high-fat diet. Sci Rept. 2019; 9:16628.
  • Lacombe A, Li RW, Klimis-Zacas D, Kristo AS, Tadepalli S, Krauss E, Young R, CH Wu V. Lowbush wild blueberries have the potential to modify gut microbiota and xenobiotic metabolism in the rat colon. PLoS One 2013;8(6).
  • Queipo-Ortuño MI, Boto-Ordóñez M, Murri M, Gomez-Zumaquero JM, Clemente-Postigo M, Estruch R, Cardona F, Andrés-Lacueva C, Tinahones F.J. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr 2012; 95(6):1323-1334.
  • Espley RV, Butts CA, Laing WA, Martell S, Smith H, McGhie TK, y col. Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice. J Nutr 2014; 144(2):146-154.
  • Pozuelo MJ, Agis‐Torres A, Hervert‐Hernández D, López‐Oliva ME, Muñoz‐Martínez E, Rotger R, Goñi I. Grape antioxidant dietary fiber stimulates Lactobacillus growth in rat cecum. J Food Sci 2012; 77(2):H59-H62.
  • Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, y col. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 2015; 64(6):872-883.
  • Masumoto S, Terao A, Yamamoto Y, Mukai T, Miura T, Shoji T. Non-absorbable apple procyanidins prevent obesity associated with gut microbial and metabolomic changes. Sci Rep. 2016; 6:31208.
  • Lee S, Keirsey KI, Kirkland R, Grunewald ZI, Fischer JG, de La Serre CB. Blueberry supplementation influences the gut microbiota, inflammation, and insulin resistance in high-fat-diet–fed rats. J Nutr 2018; 148(2):209-219.
  • Liu W, Zhao S, Wang J, Shi J, Sun Y, Wang W, Ning G, Hong J, Liu R. Grape seed proanthocyanidin extract ameliorates inflammation and adiposity by modulating gut microbiota in high-fat diet mice. Mol Nutr Food Res 2017; 61(9):1601082.
  • Van Hul M, Geurts L, Plovier H, Druart C, Everard A, Ståhlman M, y col. Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier. Am J Physiol Endocrinol Metabol 2018; 314(4):E334-352.
  • Olmedilla-Alonso B, Jiménez-Colmenero F, Sánchez-Muniz FJ. Development and assessment of healthy properties of meat and meat products designed as functional foods. Meat Sci 2013;95(4):919-930.
  • Cofrades S, Benedí J, Garcimartin A, Sánchez-Muniz FJ, Jimenez-Colmenero F. A comprehensive approach to formulation of seaweed-enriched meat products: From technological development to assessment of healthy properties. Food Res Intern 2017; 99:1084-1094.
  • Jiménez-Colmenero F, Sánchez-Muniz FJ, Olmedilla-Alonso B. Design and development of meat-based functional foods with walnut: Technological, nutritional and health impact. Food Chem 2010; 123(4):959-967.
  • López-López I, Bastida S, Ruiz-Capillas C, Bravo L, Larrea MT, Sánchez-Muniz F, Cofrades S, Jiménez- Colmenero F. Composition and antioxidant capacity of low-salt meat emulsion model systems containing edible seaweeds. Meat Sci 2009; 83(3):492-498.
  • Schultz Moreira AR, Olivero-David R, Vázquez-Velasco M, González-Torres L, Benedí J, Bastida S, Sánchez- Muniz F.J. Protective effects of sea spaghetti-enriched restructured pork against dietary cholesterol: effects on arylesterase and lipoprotein profile and composition of growing rats. J Med Food 2014; 17(8):921-928.