Estimación de la comprensibilidad en paneles de museos

  1. Jorge Morato 1
  2. Sonia Sánchez-Cuadrado 1
  3. Paolo Gimmelli 2
  1. 1 Universidad Carlos III de Madrid
    info

    Universidad Carlos III de Madrid

    Madrid, España

    ROR https://ror.org/03ths8210

  2. 2 Universidad de Castilla-La Mancha, Departamento de Filología Moderna, Centro de Lenguas
Revista:
El profesional de la información

ISSN: 1386-6710 1699-2407

Año de publicación: 2018

Título del ejemplar: Indicadores II / Libro electrónico

Volumen: 27

Número: 3

Páginas: 570-581

Tipo: Artículo

DOI: 10.3145/EPI.2018.MAY.10 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: El profesional de la información

Objetivos de desarrollo sostenible

Resumen

Se evalúa la comprensibilidad de textos en español en paneles de museos, considerando que están dirigidos a todos los públicos y escritos en lenguaje estándar. Se recopilan los indicadores propuestos en la bibliografía científica sobre la comprensibilidad y se analiza su aplicación a los paneles de museos. Se ha construido un corpus con los textos de paneles de seis museos y se evalúa la dificultad de los paneles mediante las métricas clásicas y tests sobre la percepción del usuario. Con métodos de aprendizaje automático se analiza la capacidad de estas métricas clásicas para pronosticar la dificultad para el usuario. Se han añadido indicadores lingüísticos y de familiaridad del término para mejorar la precisión del pronóstico. Lo más eficaz para predecir el grado de comprensibilidad es un modelo híbrido de indicadores clásicos, lingüísticos y de familiaridad con los términos.

Información de financiación

Agradecemos la dedicación de las personas que han participado en la evaluación de los textos. Este trabajo está financiado por el Ministerio de Economía, Industria y Competitividad de España, con el número CSO2017-86747-R y el Programa Salvador de Madariaga.

Financiadores

Referencias bibliográficas

  • Aluísio, Sandra; Gasperin, Caroline (2010). “Fostering digital inclusion and accessibility: The PorSimples project for simplification of portuguese texts”. En: Procs of the NAACL HLT 2010 Young investigarors workshop on computational approaches to languages of the Americas, Los Angeles, California, June, pp. 46-53. http://www.aclweb.org/anthology/W10-1607
  • Aluisio, Sandra; Specia, Lucia; Gasperin, Caroline; Scarton, Carolina (2010). “Readability assessment for text simplification”. En: Fifth workshop on innovative use of NLP for building educational applications, pp. 1-9. https://goo.gl/S8L2WJ
  • Badarudeen, Sameer; Sabharwal, Sanjeev (2010). “Assessing readability of patient education materials: current role in orthopaedics”. Clinical orthopaedics and related research, v. 468, n. 10, pp. 2572-2580. https://doi.org/10.1007/s11999-010-1380-y
  • Blanco, Roi; Lioma, Christina (2012). “Graph-based term weighting for information retrieval”. Information retrieval, v. 15, n. 1, pp. 54-92. https://doi.org/10.1007/s10791-011-9172-x
  • Bott, Stefan; Rello, Luz; Drndarevic, Biljana; Saggion, Horacio (2012). “Can Spanish be simpler? LexSiS: Lexical simplification for Spanish”. En: Proceedings of Coling 2012, pp. 357-374. https://aclweb.org/anthology/C/C12/C12-1023.pdf
  • Carbon, Claus-Christian (2017). “Art perception in the museum: How we spend time and space in art exhibitions”. i-Perception, v. 8, n. 1. https://doi.org/10.1177/2041669517694184
  • Dale, Edgar; Chall, Jeanne S. (1948). “A formula for predicting readability”. Educational research bulletin, v. 27, n. 1, pp. 11-28.
  • Elhadad, Noémie (2006). “Comprehending technical texts: Predicting and defining unfamiliar terms”. En: AMIA Annual symposium proceedings, pp. 239-243. https://www.ncbi.nlm.nih.gov/pubmed/17238339
  • España (2002). “Ley 34/2002, de 11 de julio, de servicios de la sociedad de la información y de comercio electrónico”. BOE, n. 166, 12 julio. https://www.boe.es/buscar/act.php?id=BOE-A-2002-13758
  • España (2013) “Ley 19/2013, de 9 de diciembre, de transparencia, acceso a la información pública y buen gobierno”. BOE, n. 295, 10 diciembre. https://www.boe.es/buscar/doc.php?id=BOE-A-2013-12887
  • Feng, Lijun; Jansche, Martin; Huenerfauth, Matt; Elhadad, Noémie (2010). “A comparison of features for automatic readability assessment”. En: Procs of the 23rd Intl conf on computational linguistics: Posters, pp. 276-284. http://dl.acm.org/citation.cfm?id=1944566.1944598
  • Ferrando-Belart, Vicky (2004). “La legibilidad: un factor fundamental para comprender un texto”. Atención primaria, v. 34, n. 3, pp. 143-146. https://goo.gl/E3S4Ko
  • Fleiss, Joseph L. (1971). “Measuring nominal scale agreement among many raters”. Psychological bulletin, v. 76, n. 5, pp. 378-382. https://doi.org/10.1037/h0031619
  • François, Thomas; Fairon, Cédrick (2012). “An ‘AI readability’ formula for French as a foreign language”. En: Joint conference on empirical methods in natural language processing and computational natural language learning, Jeju Island, Korea, 12-14 July, pp. 466-477. http://www.aclweb.org/anthology/D12-1043
  • François, Thomas; Miltsakaki, Eleni (2012). “Do NLP and machine learning improve traditional readability formulas?”. En: Proceedings of the First workshop on predicting and improving text readability for target reader populations, pp. 49-57. http://dl.acm.org/citation.cfm?id=2390916.2390925
  • Graesser, Arthur C.; McNamara, Danielle S.; Kulikowich, Jonna M. (2011). “Coh-Metrix: Providing multilevel analyses of text characteristics”. Educational researcher, v. 40, n. 5, pp. 223-234. https://doi.org/10.2307/2529310
  • Graesser, Arthur C.; McNamara, Danielle S.; Louwerse, Max M.; Cai, Zhiqiang (2004). “Coh-Metrix: Analysis of text on cohesion and language”. Behavior research methods, instruments, & computers, v. 36, n. 2, pp. 193-202. https://doi.org/10.3758/BF03195564
  • Instituto de Turismo de España (2014). Museo del Prado. Caracterización de los visitantes. Encuesta a los visitantes del Museo del Prado. https://goo.gl/k5c19g
  • Kauchak, David; Leroy, Gondy; Hogue, Alan (2017). “Measuring text difficulty using parse-tree frequency”. Journal of the Asociation for Information Science and Technology, v. 68, n. 9, pp. 2088-2100. https://doi.org/10.1002/asi.23855
  • Keselman, Alla; Tse, Tony; Crowell, Jon; Browne, Allen; Ngo, Long; Zeng, Qing (2007). “Assessing consumer health vocabulary familiarity: An exploratory study”. Journal of medical internet research, v. 9, n. 1, e5. https://doi.org/10.2196/jmir.9.1.e5
  • Landis, J. Richard; Koch, G. Gary (1977). “The measurement of observer agreement for categorical data”. Biometrics, v. 33, n. 1, pp. 159-174. http://www.ncbi.nlm.nih.gov/pubmed/843571
  • Larsson, Patrik (2006). Classification into readability levels. Implementation and evaluation. Uppsala Universitet. Department of Linguistics and Philology. https://goo.gl/YuTSvq
  • Leroy, Gondy; Endicott, James E. (2011). “Term familiarity to indicate perceived and actual difficulty of text in medical digital libraries”. En: Xing, Chunxiao; Crestani, Fabio; Rauber, A. (eds.). Digital libraries for cultural heritage, knowledge dissemination, and future creation: 13th Intl conf on Asia-Pacific digital libraries, Icadl 2011, Beijing, China, October 2427, v. 7008, pp. 307-310. https://doi.org/10.1007/978-3-642-24826-9_38
  • Leroy, Gondy; Endicott, James E. (2012). “Combining NLP with evidence-based methods to find text metrics related to perceived and actual text difficulty”. En: Proceedings of the 2nd ACM Sighit Intl health informatics symposium, pp. 749-754. https://doi.org/10.1145/2110363.2110452
  • Leroy, Gondy; Endicott, James E.; Kauchak, David; Mouradi, Obay; Just, Melissa (2013). “User evaluation of the effects of a text simplification algorithm using term familiarity on perception, understanding, learning, and information retention”. Journal of medical internet research, v. 15, n. 7, e144.
  • Ministerio de Cultura (2011). Conociendo a nuestros visitantes. Estudio de público en museos del Ministerio de Cultura. Resumen ejecutivo. Ministerio de Educación, Cultura y Deporte. https://goo.gl/Xhirta
  • Montanero-Fernández, Manuel (2004). “Cómo evaluar la comprensión lectora: alternativas y limitaciones”. Revista de educación, v. 335, pp. 415-424. https://dialnet.unirioja.es/servlet/articulo?codigo=1066564
  • Morato, Jorge; Llorens, Juan; Génova, Gonzalo; Moreiro-González, José-Antonio (2003). “Experiments in discourse analysis impact on information classification and retrieval algorithms”. Information processing & management, v. 39, n. 6, pp. 825-851. https://doi.org/10.1016/S0306-4573(02)00081-X
  • Morato, Jorge; Sánchez-Cuadrado, Sonia; Moreno, Valentín; Moreiro-González, José-Antonio (2013). “Evolución de los factores de posicionamiento web y adaptación de las herramientas de optimización”. Revista española de documentación científica, v. 36, n. 3, e018. https://doi.org/10.3989/redc.2013.3.956
  • Newbold, Neil; McLaughlin, Harry; Gillam, Lee (2010). “Rank by readability: Document weighting for information retrieval”. En: Cunningham, Hamish; Hanbury, Allan; Rüger, Stefan. Advances in multidisciplinary retrieval. IRFC. Lecture notes in computer science, v. 6107, pp. 20-30. https://doi.org/10.1007/978-3-642-13084-7_3
  • Nomura, Misako; Nielsen, Gyda S.; Tronbacke, Bror (2010). Guidelines for easy-to-read materials. IFLA professional reports. https://www.ifla.org/files/assets/hq/publications/ professional-report/120.pdf
  • OECD (2016). Skills matter. Further results from the survey of adult skills. OECD Publishing. ISBN: 978 92 64 25804 4 https://doi.org/10.1787/9789264258051-en
  • Padró, Lluís; Collado, Miquel; Reese, Samuel; Lloberes, Marina; Castellón, Irene (2010). “FreeLing 2.1: Five years of open-source language processing tools”. En: Procs of the 7th Intl conf on language resources and evaluation (LREC’10), pp. 931-936. https://goo.gl/bpQb1P
  • Pitler, Emily; Nenkova, Ani (2008). “Revisiting readability: A unified framework for predicting text quality”. In: Procs of the Conf on empirical methods in natural language processing, pp. 186-195. http://dl.acm.org/citation.cfm?id=1613715.1613742
  • Sigaud-Sellos, Pedro (2010). Aproximación a los conceptos de legibilidad y lecturabilidad: aplicación a la lectura de textos digitales. Pamplona: Universidad de Navarra. https://goo.gl/2uh4K3
  • Social Science Consulting (2013). TextQuest. http://www.textquest.de/tq-man42.pdf
  • Stenner, A. Jackson (1996). “Measuring reading comprehension with the lexile framework”. En: 4th North American conf on adolescent/adult literacy. Washington, D.C. https://goo.gl/tVTSbC
  • Stenner, A. Jackson; Smith, Malbert; Burdick, Donald S. (1983). “Toward a theory of construct definition”. Journal of educational measurement, v. 20, n. 4, pp. 305-316. https://doi.org/10.1111/j.1745-3984.1983.tb00209.x
  • Temnikova, Irina; Vieweg, Sarah; Castillo, Carlos (2015). “The case for readability of crisis communications in social media”. In: Procs of the 24th Intl conf on world wide web, pp. 1245-1250. https://doi.org/10.1145/2740908.2741718
  • Tonelli, Sara; Tran-Manh, Ke; Pianta, Emanuele (2012). “Making readability indices readable”. En: Naacl-HLT 2012 Workshop on predicting and improving text readability for target reader populations, pp. 40-48. http://www.aclweb.org/anthology/W12-2206
  • Van-Oosten, Philip; Tanghe, Dries; Hoste, Veronique (2010). “Towards an improved methodology for automated readability prediction”. En: LREC 2010: Seventh conference on international language resources and evaluation, pp. 775-782. http://hdl.handle.net/1854/LU-1055826
  • Venturi, Giulia; Bellandi, Tommaso; Dell’Orletta, Felice; Montemagni, Simonetta (2015). “NLP-based readability assessment of health-related texts: A case study on Italian informed consent forms”. En: Procs of the 6th intl workshop on health text mining and information analysis, pp. 131141. http://www.aclweb.org/anthology/W15-2618
  • Witten, Ian H.; Frank, Eibe; Hall, Mark A. (2011). “Data mining: Practical machine learning tools and techniques” (3rd ed.). San Francisco (USA): Morgan Kaufmann Publishers. ISBN: 978 0 123748560
  • Zeng-Treitler, Qing; Kim, Hyeoneui; Goryachev, Sergey; Keselman, Alla; Slaughter, Laura; Smith, Catherine-Arnott (2007). “Text characteristics of clinical reports and their implications for the readability of personal health records”. Studies in health technology and informatics, v. 129, pp. 1117-1121. http://ebooks.iospress.nl/publication/11151