Estimación de la comprensibilidad en paneles de museos
- Jorge Morato 1
- Sonia Sánchez-Cuadrado 1
- Paolo Gimmelli 2
-
1
Universidad Carlos III de Madrid
info
- 2 Universidad de Castilla-La Mancha, Departamento de Filología Moderna, Centro de Lenguas
ISSN: 1386-6710, 1699-2407
Année de publication: 2018
Titre de la publication: Indicadores II / Libro electrónico
Volumen: 27
Número: 3
Pages: 570-581
Type: Article
D'autres publications dans: El profesional de la información
Résumé
The objective of this paper is the assessment of the comprehensibility in museum panels, considering that they are addressed to all audiences and written in standard language. The indicators proposed in the scientific bibliography on comprehensibility are compiled. Subsequently, their application to the museum panels is analyzed. A corpus is built with the texts of panels from six museums and the difficulty of the panels is evaluated by means of classical metrics and tests on users’ perception. The ability of these classic metrics to predict the difficulty for the user is computed with automatic learning methods. Linguistic and term familiarity indicators have been added to improve the accuracy of the assessment. The most effective way to predict the degree of comprehensibility is a hybrid model of classical, linguistic and term familiarity indicators.
Information sur le financement
Agradecemos la dedicación de las personas que han participado en la evaluación de los textos. Este trabajo está financiado por el Ministerio de Economía, Industria y Competitividad de España, con el número CSO2017-86747-R y el Programa Salvador de Madariaga.Financeurs
-
Ministerio de Economía, Industria y Competitividad
Spain
- CSO2017-86747-R
Références bibliographiques
- Aluísio, Sandra; Gasperin, Caroline (2010). “Fostering digital inclusion and accessibility: The PorSimples project for simplification of portuguese texts”. En: Procs of the NAACL HLT 2010 Young investigarors workshop on computational approaches to languages of the Americas, Los Angeles, California, June, pp. 46-53. http://www.aclweb.org/anthology/W10-1607
- Aluisio, Sandra; Specia, Lucia; Gasperin, Caroline; Scarton, Carolina (2010). “Readability assessment for text simplification”. En: Fifth workshop on innovative use of NLP for building educational applications, pp. 1-9. https://goo.gl/S8L2WJ
- Badarudeen, Sameer; Sabharwal, Sanjeev (2010). “Assessing readability of patient education materials: current role in orthopaedics”. Clinical orthopaedics and related research, v. 468, n. 10, pp. 2572-2580. https://doi.org/10.1007/s11999-010-1380-y
- Blanco, Roi; Lioma, Christina (2012). “Graph-based term weighting for information retrieval”. Information retrieval, v. 15, n. 1, pp. 54-92. https://doi.org/10.1007/s10791-011-9172-x
- Bott, Stefan; Rello, Luz; Drndarevic, Biljana; Saggion, Horacio (2012). “Can Spanish be simpler? LexSiS: Lexical simplification for Spanish”. En: Proceedings of Coling 2012, pp. 357-374. https://aclweb.org/anthology/C/C12/C12-1023.pdf
- Carbon, Claus-Christian (2017). “Art perception in the museum: How we spend time and space in art exhibitions”. i-Perception, v. 8, n. 1. https://doi.org/10.1177/2041669517694184
- Dale, Edgar; Chall, Jeanne S. (1948). “A formula for predicting readability”. Educational research bulletin, v. 27, n. 1, pp. 11-28.
- Elhadad, Noémie (2006). “Comprehending technical texts: Predicting and defining unfamiliar terms”. En: AMIA Annual symposium proceedings, pp. 239-243. https://www.ncbi.nlm.nih.gov/pubmed/17238339
- España (2002). “Ley 34/2002, de 11 de julio, de servicios de la sociedad de la información y de comercio electrónico”. BOE, n. 166, 12 julio. https://www.boe.es/buscar/act.php?id=BOE-A-2002-13758
- España (2013) “Ley 19/2013, de 9 de diciembre, de transparencia, acceso a la información pública y buen gobierno”. BOE, n. 295, 10 diciembre. https://www.boe.es/buscar/doc.php?id=BOE-A-2013-12887
- Feng, Lijun; Jansche, Martin; Huenerfauth, Matt; Elhadad, Noémie (2010). “A comparison of features for automatic readability assessment”. En: Procs of the 23rd Intl conf on computational linguistics: Posters, pp. 276-284. http://dl.acm.org/citation.cfm?id=1944566.1944598
- Ferrando-Belart, Vicky (2004). “La legibilidad: un factor fundamental para comprender un texto”. Atención primaria, v. 34, n. 3, pp. 143-146. https://goo.gl/E3S4Ko
- Fleiss, Joseph L. (1971). “Measuring nominal scale agreement among many raters”. Psychological bulletin, v. 76, n. 5, pp. 378-382. https://doi.org/10.1037/h0031619
- François, Thomas; Fairon, Cédrick (2012). “An ‘AI readability’ formula for French as a foreign language”. En: Joint conference on empirical methods in natural language processing and computational natural language learning, Jeju Island, Korea, 12-14 July, pp. 466-477. http://www.aclweb.org/anthology/D12-1043
- François, Thomas; Miltsakaki, Eleni (2012). “Do NLP and machine learning improve traditional readability formulas?”. En: Proceedings of the First workshop on predicting and improving text readability for target reader populations, pp. 49-57. http://dl.acm.org/citation.cfm?id=2390916.2390925
- Graesser, Arthur C.; McNamara, Danielle S.; Kulikowich, Jonna M. (2011). “Coh-Metrix: Providing multilevel analyses of text characteristics”. Educational researcher, v. 40, n. 5, pp. 223-234. https://doi.org/10.2307/2529310
- Graesser, Arthur C.; McNamara, Danielle S.; Louwerse, Max M.; Cai, Zhiqiang (2004). “Coh-Metrix: Analysis of text on cohesion and language”. Behavior research methods, instruments, & computers, v. 36, n. 2, pp. 193-202. https://doi.org/10.3758/BF03195564
- Instituto de Turismo de España (2014). Museo del Prado. Caracterización de los visitantes. Encuesta a los visitantes del Museo del Prado. https://goo.gl/k5c19g
- Kauchak, David; Leroy, Gondy; Hogue, Alan (2017). “Measuring text difficulty using parse-tree frequency”. Journal of the Asociation for Information Science and Technology, v. 68, n. 9, pp. 2088-2100. https://doi.org/10.1002/asi.23855
- Keselman, Alla; Tse, Tony; Crowell, Jon; Browne, Allen; Ngo, Long; Zeng, Qing (2007). “Assessing consumer health vocabulary familiarity: An exploratory study”. Journal of medical internet research, v. 9, n. 1, e5. https://doi.org/10.2196/jmir.9.1.e5
- Landis, J. Richard; Koch, G. Gary (1977). “The measurement of observer agreement for categorical data”. Biometrics, v. 33, n. 1, pp. 159-174. http://www.ncbi.nlm.nih.gov/pubmed/843571
- Larsson, Patrik (2006). Classification into readability levels. Implementation and evaluation. Uppsala Universitet. Department of Linguistics and Philology. https://goo.gl/YuTSvq
- Leroy, Gondy; Endicott, James E. (2011). “Term familiarity to indicate perceived and actual difficulty of text in medical digital libraries”. En: Xing, Chunxiao; Crestani, Fabio; Rauber, A. (eds.). Digital libraries for cultural heritage, knowledge dissemination, and future creation: 13th Intl conf on Asia-Pacific digital libraries, Icadl 2011, Beijing, China, October 2427, v. 7008, pp. 307-310. https://doi.org/10.1007/978-3-642-24826-9_38
- Leroy, Gondy; Endicott, James E. (2012). “Combining NLP with evidence-based methods to find text metrics related to perceived and actual text difficulty”. En: Proceedings of the 2nd ACM Sighit Intl health informatics symposium, pp. 749-754. https://doi.org/10.1145/2110363.2110452
- Leroy, Gondy; Endicott, James E.; Kauchak, David; Mouradi, Obay; Just, Melissa (2013). “User evaluation of the effects of a text simplification algorithm using term familiarity on perception, understanding, learning, and information retention”. Journal of medical internet research, v. 15, n. 7, e144.
- Ministerio de Cultura (2011). Conociendo a nuestros visitantes. Estudio de público en museos del Ministerio de Cultura. Resumen ejecutivo. Ministerio de Educación, Cultura y Deporte. https://goo.gl/Xhirta
- Montanero-Fernández, Manuel (2004). “Cómo evaluar la comprensión lectora: alternativas y limitaciones”. Revista de educación, v. 335, pp. 415-424. https://dialnet.unirioja.es/servlet/articulo?codigo=1066564
- Morato, Jorge; Llorens, Juan; Génova, Gonzalo; Moreiro-González, José-Antonio (2003). “Experiments in discourse analysis impact on information classification and retrieval algorithms”. Information processing & management, v. 39, n. 6, pp. 825-851. https://doi.org/10.1016/S0306-4573(02)00081-X
- Morato, Jorge; Sánchez-Cuadrado, Sonia; Moreno, Valentín; Moreiro-González, José-Antonio (2013). “Evolución de los factores de posicionamiento web y adaptación de las herramientas de optimización”. Revista española de documentación científica, v. 36, n. 3, e018. https://doi.org/10.3989/redc.2013.3.956
- Newbold, Neil; McLaughlin, Harry; Gillam, Lee (2010). “Rank by readability: Document weighting for information retrieval”. En: Cunningham, Hamish; Hanbury, Allan; Rüger, Stefan. Advances in multidisciplinary retrieval. IRFC. Lecture notes in computer science, v. 6107, pp. 20-30. https://doi.org/10.1007/978-3-642-13084-7_3
- Nomura, Misako; Nielsen, Gyda S.; Tronbacke, Bror (2010). Guidelines for easy-to-read materials. IFLA professional reports. https://www.ifla.org/files/assets/hq/publications/ professional-report/120.pdf
- OECD (2016). Skills matter. Further results from the survey of adult skills. OECD Publishing. ISBN: 978 92 64 25804 4 https://doi.org/10.1787/9789264258051-en
- Padró, Lluís; Collado, Miquel; Reese, Samuel; Lloberes, Marina; Castellón, Irene (2010). “FreeLing 2.1: Five years of open-source language processing tools”. En: Procs of the 7th Intl conf on language resources and evaluation (LREC’10), pp. 931-936. https://goo.gl/bpQb1P
- Pitler, Emily; Nenkova, Ani (2008). “Revisiting readability: A unified framework for predicting text quality”. In: Procs of the Conf on empirical methods in natural language processing, pp. 186-195. http://dl.acm.org/citation.cfm?id=1613715.1613742
- Sigaud-Sellos, Pedro (2010). Aproximación a los conceptos de legibilidad y lecturabilidad: aplicación a la lectura de textos digitales. Pamplona: Universidad de Navarra. https://goo.gl/2uh4K3
- Social Science Consulting (2013). TextQuest. http://www.textquest.de/tq-man42.pdf
- Stenner, A. Jackson (1996). “Measuring reading comprehension with the lexile framework”. En: 4th North American conf on adolescent/adult literacy. Washington, D.C. https://goo.gl/tVTSbC
- Stenner, A. Jackson; Smith, Malbert; Burdick, Donald S. (1983). “Toward a theory of construct definition”. Journal of educational measurement, v. 20, n. 4, pp. 305-316. https://doi.org/10.1111/j.1745-3984.1983.tb00209.x
- Temnikova, Irina; Vieweg, Sarah; Castillo, Carlos (2015). “The case for readability of crisis communications in social media”. In: Procs of the 24th Intl conf on world wide web, pp. 1245-1250. https://doi.org/10.1145/2740908.2741718
- Tonelli, Sara; Tran-Manh, Ke; Pianta, Emanuele (2012). “Making readability indices readable”. En: Naacl-HLT 2012 Workshop on predicting and improving text readability for target reader populations, pp. 40-48. http://www.aclweb.org/anthology/W12-2206
- Van-Oosten, Philip; Tanghe, Dries; Hoste, Veronique (2010). “Towards an improved methodology for automated readability prediction”. En: LREC 2010: Seventh conference on international language resources and evaluation, pp. 775-782. http://hdl.handle.net/1854/LU-1055826
- Venturi, Giulia; Bellandi, Tommaso; Dell’Orletta, Felice; Montemagni, Simonetta (2015). “NLP-based readability assessment of health-related texts: A case study on Italian informed consent forms”. En: Procs of the 6th intl workshop on health text mining and information analysis, pp. 131141. http://www.aclweb.org/anthology/W15-2618
- Witten, Ian H.; Frank, Eibe; Hall, Mark A. (2011). “Data mining: Practical machine learning tools and techniques” (3rd ed.). San Francisco (USA): Morgan Kaufmann Publishers. ISBN: 978 0 123748560
- Zeng-Treitler, Qing; Kim, Hyeoneui; Goryachev, Sergey; Keselman, Alla; Slaughter, Laura; Smith, Catherine-Arnott (2007). “Text characteristics of clinical reports and their implications for the readability of personal health records”. Studies in health technology and informatics, v. 129, pp. 1117-1121. http://ebooks.iospress.nl/publication/11151