Geochemistry in earth sciencesa brief overview

  1. Javier Fernández-Suárez 1
  2. Sonia Sánchez Martínez 1
  3. José M. Fuenlabrada 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Revista:
Journal of iberian geology: an international publication of earth sciences

ISSN: 1886-7995 1698-6180

Año de publicación: 2021

Título del ejemplar: New developments in Geochemistry. A tribute to Carmen Galindo

Volumen: 47

Número: 1-2

Páginas: 3-13

Tipo: Artículo

DOI: 10.1007/S41513-020-00157-6 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of iberian geology: an international publication of earth sciences

Resumen

En esta contribución presentamos una visión sucinta del papel de la Geoquímica en el panorama de las Ciencias de la Tierra. Nuestra idea es mostrar una perspectiva del origen de la Geoquímica y su desarrollo histórico, así como de la evolución de las técnicas analíticas que han llevado a esta disciplina a ocupar un papel relevante en las Ciencias de la Tierra. Finalmente, ofrecemos un comentario sobre alguna de las aplicaciones más significativas de la Geoquímica en el estudio de diversos problemas geológicos.

Referencias bibliográficas

  • Albarède, F. (2010). Introduction to geochemical modelling (p. 564). Press: Cambridge Univ.
  • Albarède, F., Telouk, P., Blichert-Toft, J., Boyet, M., Agranier, A., & Nelson, B. (2004). Precise and accurate isotopic measurements using multiple-collector ICPMS. Geochimca et Cosmochimica Acta, 68(12), 2725–2744.
  • Allègre, C. (1992). From stone to star (p. 287). Cambridge: Harvard University Press.
  • Alonso-Zarza, A., Martín-Pérez, A., Martín-García, R., Gil-Peña, I., Melendez, A., Martínez-Flores, E., et al. (2011). Geological Magazine, 148, 211–225.
  • Alvarez, L. W., Alvarez, W., Asaro, F., & Michel, H. V. (1980). Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208, 1095–1108.
  • Amelin, Y., Krot, A. N., Hutcheon, I. D., & Ulyanov, A. A. (2002). Lead isotopic ages of chondrules and Calcium-Aluminium-Rich inclusions. Science, 297, 1678–1683.
  • Arnold, J. R., & Libby, W. F. (1949). Age determinations by radiocarbon content: checks with samples of known age. Science, 110, 678–680.
  • Bea, F., Montero, P., Garuti, G., & Zacharini, F. (1997). Pressure-dependence of rare earth element distribution in amphibolite- and granulite-grade garnets. A LA-ICP-MS study. Geostandards Newsletters, 21(2), 253–270.
  • Bell, E. A., Boehnke, P., Harrison, T. M., & Mao, W. L. (2015). Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proceedings of the National Academy of Sciences, 112, 14518–14521.
  • Benninghoven, A., Rüdenauer, F. G., & Werner, H. W. (1987). Secondary ion mass spectrometry: basic concepts, instrumental aspects, applications and trends (p. 1277). New York: Wiley.
  • Bindeman, I. (2008). Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Reviews in Mineralogy and Geochemistry, 69, 445–478.
  • Blichert-Toft, J., Chauvel, C., & Albárede, F. (1997). Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector multicollector ICP-MS. Contributions to Mineralogy and Petrology, 127, 248–260.
  • Carbonell, E., et al. (2008). The first hominin of Europe. Nature, 452, 465–470.
  • Chang, Z., Vervoort, J. D., McClelland, W. C., & Knaack, C. (2006). U-Pb dating of zircon by LA-ICPMS. Geochemistry, Geophysics and Geosystems, 7, Q05009. https ://doi.org/10.1029/2005G C0011 00.
  • Clarke, F. W. (1908). The data of geochemistry (p. 716). Washington, D.C.: U.S. Government Printing Office.
  • Corfu, F. (2013). A century of U-Pb geochronology. The long quest towards concordance. GSA Bulletin, 125, 33–47.
  • Date, A. R., & Gray, A. L. (1981). Plasma source mass spectrometry using an inductively coupled plasma and a high resolution quadrupole mass filter. Analyst (London), 106, 1255–1267.
  • Dauphas, N., & Chaussidon, M. (2011). A perspective from extinct radionuclides on a young stellar object: The Sun and its accretion disk. Annual Review of Earth and Planetary Sciences, 39, 351–386.
  • Durrant, J. F. (1999). Laser ablation inductively coupled mass spectrometry: achievements, problems, prospects. Journal of Analytical Atomic Spectrometry, 12, 1385–1403.
  • Eiler, J. M. (2007). “Clumped-isotope geochemistry—The study of naturally-occurying, multiply-substitutes isotopologues. Earth and Planetary Science Letters, 262, 309–327.
  • Fairbridge R.W. (1998). History of geochemistry. In: Geochemistry. Encyclopedia of Earth Science. Dordrecht: Springer. https ://doi. org/10.1007/1-4020-4496-8
  • Fassel, V. A. (1978). Quantitative elemental analyses by plasma emission spectroscopy. Science, 202, 183–191.
  • Feng, R., Machado, N., & Ludden, J. (1993). Lead geochronology zircon by laser probe inductively coupled plasma mass spectrometry (LP-ICPMS). Geochimica et Cosmochimica Acta, 57, 3479–3486.
  • Fersman, A. (1958). Geochemistry for everyone (p. 454). Moscow: Foreign Languages Publishing House.
  • Foster, G. L., & Rae, W. B. (2016). Reconstructing ocean pH with Boron isotopes in foraminifera. Annual Review of Earth and Planetary Sciences, 44, 207–237.
  • Frei, D., & Gerdes, A. (2009). Precise and accurate in situ U-Pb dating of zircon with high sample throughput by automated LA-SF-ICPMS. Chemical Geology, 261(3–4), 261–270.
  • Fryer, B. J., Jackson, S. E., & Longerich, H. P. (1993). The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ (U)-Pb geochronology. Chemical Geology, 109(1–4), 1–8.
  • Gosse, J. C., & Phillips, F. M. (2001). Terrestrial in situ cosmogenic nuclides: Theory and application. Quaternary Science Reviews, 20, 1475–1560.
  • Gray, A. L. (1985). Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst (London), 110, 551–556.
  • Günther, D., & Hattendorf, B. (2005). Solid sample analysis using laser ablation inductively coupled mass spectrometry. Trends in Analytical Chemistry, 24, 255–265.
  • Hanchar, J. M., & Hoskin, W. O. (2003). Zircon. Reviews in Mineralogy and Geochemistry, 53, 500.
  • Heumann, K. G. (1992). Isotope dilution mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 118/119, 575–592.
  • Hirata, T., & Nesbitt, R. W. (1995). U-Pb isotope geochronology of zircon: evaluation of the laser probe-inductively coupled plasmamass spectrometry technique. Geochimica et Cosmochimica Acta, 59, 2491–2500.
  • Houk, R. S., Fassle, V. A., Flesch, G. D., Svec, H. J., Gary, A. L., & Taylor, C. E. (1980). Inductively coupled plasma as an ion source for mass spectrometric determination of trace elements. Analytical Chemistry, 52, 2238–2289.
  • Ireland, T. R., Clement, S., Compston, W., Foster, J. J., Holden, P., Jenkins, B., et al. (2008). Development of SHRIMP. Australian Journal of Earth Sciences, 55(6–7), 937–954.
  • Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1–2), 47–69.
  • Jeffries, T.E. (2004). Laser Ablation Inductively Coupled Plasma Mass Spectrometry. In: K. Janssens, R. Van Grieken (Eds.), Nondestructive microanalysis of cultural heritage materials. Comprehensive Analytical Chemistry (vol. 42, pp. 313–358).
  • Jeffries, T. E., Fernandez-Suarez, J., Corfu, F., & Gutierrez, G. (2003). Advances in U-Pb geochronology using a frequency quintupled Nd:YAG based laser ablation system (λ = 213 nm) and quadrupole based ICP-MS. Journal of Analytical Atomic Spectrometry, 18, 847–855.
  • Jurikova, H., Gutjahr, M., Wallmann, K., et al. (2020). Permian-Triassic mass extinction pulses driven by major marine carbon cycle perturbations. Nature Geoscience. https ://doi.org/10.1038/s4156 1-020-00646 -4.
  • Lamphere, M., Champion, D., Melluso, L., Morra, V., Perrotta, A., Scarpati, C., et al. (2007). 40Ar-40Ar ages of the AD 79 eruption of Vesuvius, Italy. Bulletin of Volcanology, 69, 259–263.
  • Liu, S., & Li, S. (2019). Tracing the deep carbon cycling using metal stable isotopes: Opportunities and challenges. Engineering, 5, 448–457.
  • McKeegan, K. D., et al. (2011). The oxygen isotopic composition of the Sun inferred from captured solar wind. Science, 332, 1528–1532.
  • Mojzsis, S. J., Pidgeon, R. T., & Harrison, T. M. (2001). Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature, 409, 178–181.
  • Nier, A. O. (1940). A mass spectrometer for routine isotope abundance measurements. Review of Scientific Instruments, 11, 212–216.
  • Porcelly, D., Ballentine, C. J., & Wieler, R. (2002). Noble gas geochemistry and cosmochemistry. Reviews in Mineralogy and Petrology, 47, 1–19.
  • Price, T. D., Manzanilla, L., & Middleton, W. (2000). Immigration and the ancient city of Teotihuacanin Mexico: A study using strontium isotope ratios in human bone and teeth. Journal of Archaeological Science, 27, 903–913.
  • Pu, S., Yang, H., & Jones, J. H. (2013). Using stable isotopes to trace diet-induced shifts in pathways of lipid metabolism. Lipid Technology, 25, 63–66.
  • Rollinson, H. R. (1993). Using Geochemical data: Evaluation, Presentation, Interpretation. Ed. Longman, 352 pp.
  • Schobben, M., & Schootbrugge, B. (2019). Increased stability in carbon isotope records reflects emerging complexity of the biosphere. Frontiers in Earth Science, 7, 1–19.
  • Shields, G., Veizer, J. (2002). Precambrian marine carbonate isotope database. Version 1.1. Geochemistry Geophysics Geosystems, 3(6), 1–12.
  • Simonetti, A., Heaman, L. M., Chacko, T., & Banerjee, N. R. (2006). In situ petrographic thin section U-Pb dating of zircon, monazite, and titanite using laser ablation–MC–ICP-MS. International Journal of Mass Spectrometry, 253(1), 87–97.
  • Teng, F.Z., Dauphas, N.,Watkins, J.M. (Eds.) (2017). Non-traditional stable isotopes: retrospective and perspective. Reviews in Mineralogy and Petrology, 82.
  • Thirlwall, M. F., & Walder, A. J. (1995). In situ hafnium isotope ratio analysis of zircon by inductively coupled plasma multiple collector mass spectrometry. Chemical Geology, 122, 241–247.
  • Urey, H.C., (1947). The thermodynamic properties of isotopic substances. Journal of the Chemical Society, 11, 562–581.
  • Valley, J. W. (2005). A cool Early Earth? Scientific American, 293, 59–65.
  • Valley, J.W., Cole, D.R. (2001). Stable isotope geochemistry. Reviews in Mineralogy and Petrology, 43, 667.
  • Vernadski, V.I. (1924). La géochimie. Librairie Félix Alcan, 403 pp.
  • Wang, K., & Jacobsen, S. B. (2016). Potassium isotopic evidence for a high-energy giant impact for the origin of the moon. Nature, 538, 487–490.
  • White, W. (2015). Isotope geochemistry. Wiley Blackwell Ed., Hoboken, 478 pp.