Un modelo estructural para la detección temprana del abandono en la universidadmetacomprensión, TIC y motivación hacia la titulación de Trabajo Social
- Jiménez Rodríguez, Virginia
- Alvarado Izquierdo, Jesús María
- Méndez Salazar, Lucía del Rosario
ISSN: 1133-0473, 1989-9971
Argitalpen urtea: 2021
Zenbakia: 28
Orrialdeak: 167-187
Mota: Artikulua
Beste argitalpen batzuk: Alternativas: Cuadernos de Trabajo Social
Laburpena
Introduction. The present study centred on the problem of university dropout. It focused on the first year of the Social Work degree with the aim of producing an explanatory model, which would enable interventions in dropout-prediction variables, thus ultimately helping to increase student graduation rates. A theoretical review was conducted and led to the following potential explanatory variables: interest in the degree, cognitive self-regulation processes linked to learning and self-control. While metacognitive processes, such as planning, play a protective role, loss of control would be a risk factor and has been observed in relation to pathological internet use (PIU). Methodology. Based on a correlational study, in which 355 first-year Social Work students participated, we evaluated the extent to which cognitive self-regulation and self-control, measured in the context of ICT, influenced or determined interest in the degree and possible dropout. We did this by creating and testing a Structural Equations Model (SEM), in which Dropout was directly related to the Interest in the degree and indirectly related to the factors of Self-Regulation and Self-Control. Three instruments were used: the ESCOLA reading awareness scale, which is an instrument that assesses processes and metacognitive variables in reading tasks with three possible responses; the CUTIC questionnaire, designed to measure the utility of ICT connected to the Internet; and a questionnaire to evaluate the interest in the degree and possible dropout. Results. The SEM model was tested and showed an adequate goodness or adjustment using the estimation of robust weighted least squares (WLSMV): S-B χ2 (723) = 1260, p<0.001, CFI = 0.97, TLI = 0.97, RMSEA = 0.049 (0.044; 0.053). The direct effect of Interest on Dropout and the indirect effect of self-regulation and self-control were thus verified. Discussion. Metacognition as an explanatory variable of academic performance was observed to have a relevant weight regarding the scientific interest in the studies and on not dropping out of the year. Reading metacomprehension in its planning process was shown to explain a substantial part of the variance of average academic performance, measured in this study through student grades obtained during the first term. Conclusions. To conclude, the following measures can play a key role: promoting a reasonable and responsible use of ICT because of its major motivational value in education; using mobile phones as a resource in academic activities because, according to this study, they are not related to PIU and can be used for educational purposes in the classroom. In addition, educational programmes must be deployed in the classroom that would allow university students to implement both cognitive and meta-cognitive strategies, above all in the field of reading, in order to guarantee successful academic performance at university. In fact, increasing students’ interest in the degree is key to reducing dropout rates, so it is essential to improve reading metacomprehension and to help students develop healthy habits when using ICT.
Erreferentzia bibliografikoak
- Abarca, Y. (2015). El uso de las TIC en la educación universitaria: motivación que influye en su uso y frecuencia. Revista de Lenguas Modernas, (22), 335-349. https://doi.org/10.15517/rlm.v0i22.19692
- Akbari, M. (2017). Metacognitions or distress intolerance: The mediating role in the relationship between emotional dysregulation and problematic internet use. Addictive Behaviors Reports, 6, 128-133. http://dx.doi.org/10.1016/j. abrep.2017.10.004
- Álvarez, P.R. y López, D. (2011). El absentismo en la enseñanza universitaria: un obstáculo para la participación y el trabajo autónomo del alumnado. Revista de Pedagogía, 63(3), 43-56. Recuperado de: https://recyt.fecyt.es/index.php/ BORDON/article/view/29054/15498
- Arce, M. E., Crespo, B. y Mínguez-Álvarez, C. (2015). Higher Education Drop- Out in Spain-Particular Case of Universities in Galicia. International Education Studies, 8(5), 247-264. https://doi.org/10.5539/ies.v8n5p247
- Asún, R. A., Rodríguez-Navarro, K. y Alvarado, J. M. (2016). Developing multidimensional Likert scales using item factor analysis: The case of fourpoint items. Sociological Methods & Research, 45(1), 109-133. https://doi. org/10.1177/0049124114566716.
- Bawden, D. (2008). Origins and concepts of digital literacy. En C. Lankshear and M. Knobel (Ed). Digital Literacies: Concepts, Policies and Practices (pp. 17-32). New York: Peter Lang.
- Bean, J. P. (1980). Dropouts and turnover. The synthesis and test of a causal model of student attrition. Research in Higher Education, 12(2), 155-187. https://doi. org/10.1007/BF00976194
- Beard, K. y Wolf, E. M. (2004). Modification in the Proposed Diagnostic Criteria for Internet Addiction. CyberPsychology & Behavior, 4(3), 377-383. https://doi. org/10.1089/109493101300210286
- Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238-246. https://doi.org/10.1037/0033-2909.107.2.238
- Bono, A., Boatto, Y. E., Aguilera, M. S. y Fenoglio, M. C. (2018). Tareas de clase de gestión metacognitiva. Una propuesta de intervención pedagógica en el aula universitaria. Innovación Educativa, 18(78), 143-170. Recuperado de http://www. scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-26732018000300143
- Burin, D., Coccimiglio, Y., González, F. y Bulla, J. (2016). Desarrollos recientes sobre Habilidades Digitales y Comprensión Lectora en Entornos Digitales. Psicología, Conocimiento y Sociedad, 6(1), 191-206. Recuperado de https:// revista.psico.edu.uy/index.php/revpsicologia/article/view/301
- Cabrera, L., Tomás, J., Álvarez, P. y González, M. (2006). El problema del abandono de los estudios universitarios. RELIEVE, 12(2), 171-203. https://doi. org/10.7203/relieve.12.2.4226
- Coiro, J. (2011). Predicting Reading Comprehension on the Internet: Contributions of Offline Reading Skills, Online Reading Skills, and Prior Knowledge. Journal of Literacy Research, 43(4), 352-392. https://doi.org/10.1177/1086296X11421979
- Durán Aponte, E. y Elvira Valdés, M. A. (2015). Patrones atribucionales y persistencia académica en estudiantes universitarios: validez de la escala atribucional de Motivación de Logro General (EAML-G). Revista Intercontinental de Psicología y Educación, 17(2), 201-221. Recuperado de: https://www.redalyc. org/pdf/802/80247939011.pdf
- Egger, O. y Rauterberg, M. (1996). Internet behavior and addiction. Zurich: Work & Organisational Psychology Unit (IfAP), Swiss Federal Institute of Technology (ETH). Recuperado de: https://rauterberg.employee.id.tue.nl/ibq/ report.pdf
- Feldman, R. S. (2005). Improving the first year of college: research and practice. Mahwah, NJ: Lawrence Erlbaum Associates. https://doi.org/10.4324/9781410611864
- Fernández, M., Jiménez, V., Alvarado, J. M. y Puente, A. (2010). La Escala de Conciencia Lectora (ESCOLA): un instrumento para evaluar metacognición y funciones ejecutivas en tareas de lectura. Revista Neuropsicología, Neuropsiquiatría y Neurociencias, 10(1), 95-116. Recuperado de https://dialnet. unirioja.es/servlet/articulo?codigo=3988293
- Fernández-Villa, T., Alguacil Ojeda, J., Almaraz Gómez, A., Cancela Carral, J.M., Delgado-Rodríguez, M., García-Martín, M., Jiménez-Mejías, E., Llorca, J., Molina, A.J., Ortiz Moncada, R., Valero-Juan, J., L.F. y Martín, V. (2015). Uso problemático de internet en estudiantes universitarios: factores asociados y diferencias de género. Adicciones, 27(4), 265-275. https://doi. org/10.20882/adicciones.751
- Figueroa, P., Dorio, I. y Forner, A. (2003). Las competencias académicas previas y el apoyo familiar en la transición a la universidad. Revista de Investigación Educativa, 21(2), 349-369. Recuperado de http://revistas.um.es/rie/article/ view/99251
- Fuentes, A., Jiménez, V. y Alvarado, J. M. (2020). Comprensión lectora Digital versus Tradicional según familiaridad con las TIC. European Journal of Child Development, Education and Psychopathology, 8(1), 57-64. https://doi. org/10.30552/ejpad.v8i1.131
- Garrote-Rojas, D., Jiménez-Fernández, S. y Gómez-Barreto, I. (2018). Problemas derivados del uso de internet y el teléfono móvil en estudiantes universitarios. Formación Universitaria, 11(2). https://doi.org/10.4067/ S0718-50062018000200099
- González Alfonso, M., Álvarez Pérez, P., Cabrera Pérez, L. y Bethencourt Benítez, J. (2007). El abandono de los estudios universitarios; factores determinantes y medidas preventivas. Revista Española de Pedagogía, 236, 71-86. Recuperado de https://revistadepedagogia.org/lxv/no-236/ el-abandono-de-los-estudios-universitarios-factores-determinantes-y-medidaspreventivas/ 101400009968/
- González Ramírez, T. y Pedraza Navarro, I. (2017). Variables sociofamiliares asociadas al abandono de los estudios universitarios. Educatio Siglo XXI, 35(2), 365-388. https://doi.org/10.6018/j/298651
- Guerra, J. y Guevara, C. Y. (2017). Variables académicas, comprensión lectora, estrategias y motivación en estudiantes universitarios. Revista Electrónica de Investigación Educativa, 19(2), 78-90. https://doi.org/10.24320/ redie.2017.19.2.1125
- Hu, L. y Bentler, P. M. (1990). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
- Jiménez, V., Alvarado, J. M. y Llopis, C. (2017). Validación de un cuestionario diseñado para medir frecuencia y amplitud de uso de las TIC. Eductec. Revista Electrónica de Tecnología Educativa, (61), 1-14. https://doi.org/10.21556/ edutec.2017.61.949
- Jiménez, V., Puente, A., Alvarado, J. M. y Arrebillaga, L. (2009). La medición de las estrategias metacognitivas mediante la escala de conciencia lectora ESCOLA. Revista de Investigación Psicoeducativa, 7(18). 779-804. http://dx.doi. org/10.25115/ejrep.v7i18.1326
- Lankshear, C. y Knobel, M. (2008). Digital Literacies: Concepts, Policies and Practices. New York: Peter Lang.
- Lu, L. (1994). University transition: major and minor life stressors, personality characteristics and mental health. Psychological Medicine, 24(1), 81-87. https:// doi.org/10.1017/S0033291700026854
- Martínez-Otero Pérez, V. y Torres Barberis, L. (2005). Análisis de los hábitos de estudio en una muestra de alumnos universitarios. RIE. Revista Iberoamericana de Educación, 36(7), 1-8. https://doi.org/10.35362/rie3672929
- Necochea Ocaña, Y., Nervi Condori, C., Tuesta Echeandía, V., Olazabal Valera, L., Rodríguez, Carrasco, J. y León-Jiménez, F. (2017). Frecuencia y características del abandono estudiantil en una Escuela de Medicina de Lambayaque 2006-2014. Revista Médica Herediana, 28(3), 171-177. https:// doi.org/10.20453/rmh.v28i3.3184
- Niemz, K., Griffiths, M. y Banyard, P. (2005). Prevalence of pathological internet use among university students and correlations with self-estemm, the General Health Questionnaire (GHQ), and Disinhibition. CyberPsychology & Behavior, 8(6), 562-570. https://doi.org/10.1089/cpb.2005.8.562
- Nora, A. (2001). The depiction of significant others in Tinto’s «Rights of Passage»: A reconceptualization of the influence of family and community in the persistence process. Journal of College Student Retention, 3(1), 41-56. https://doi. org/10.2190/BYT5-9F05-7F6M-5YCM
- Pascarella, E. T. y Terenzini, P. T. (1991). How College Affects Students: Findings and Insights from Twenty Years of Research. San Francisco: Jossey-Bass.
- Pegalajar-Palomino, M. C. (2016). Estrategias de aprendizaje en alumnado universitario para la formación presencial y semipresencial. Revista Latinoamericana de Ciencias Sociales, Niñez y Juventud, 14(1), 659-676. Recuperado de https:// dialnet.unirioja.es/servlet/articulo?codigo=5382049
- Puente, A., Jiménez, V. y Alvarado, J. M. (2009). ESCOLA: Escala de Conciencia Lectora. Madrid: EOS.
- Raju, D. y Schumacker, R. (2015). Exploring student characteristics of retention that lead to graduation in higher education using data mining models. Journal of College Student Retention: Research, Theory & Practice, 16(4), 563- 591. https://doi.org/10.2190/CS.16.4.e
- Rodríguez, A., García, E., Ibañez, R., González, J. y Heine, J. (2009). Las TIC en la educación superior: estudio de los factores intervinientes en la adopción de un LMS por docentes innovadores. Revista Latinoamericana de Tecnología Educativa – RELATEC, 8(1), 35-51. Recuperado de https://relatec.unex.es/ article/view/479
- Rosseel, Y. (2012). lavaan: An R package for structural equation modeling and more. Journal of Statistical Software, 48(2), 1-36. https://doi.org/10.18637/jss. v048.i02
- Sierra-Parodi A., Jiménez Meredith L. y Martelo, R. (2017). Habilidades de comprensión lectora en estudiantes universitarios de trabajo social. Revista Espacios, 38(50), 10-26. Recuperado de https://www.revistaespacios.com/ a17v38n50/17385010.html
- Silva, M. (2011). El primer año universitario. Un tramo crítico para el éxito académico. Perfiles Educativos, 33, 102-114. Recuperado de https://dialnet.unirioja. es/servlet/articulo?codigo=7058798
- Spada, M. M., Langston, B., Nikcevic, A. V. y Moneta, G. B. (2008). The role of metacognitions in problematic Internet use. Computers in Human Behavior, 24(5), 2325-2335 https://doi.org/10.1016/j.chb.2007.12.002
- Tinto, V. (1987). Leaving College: Rethinking the Causes and Cures of Student Attrition. Chicago: University of Chicago Press.
- Van Deursen, A. J. y Van Dijk, J. A. (2014). The digital divide shifts to differences in usage. New Media & Society, 16(3), 507-526. https://doi. org/10.1177/1461444813487959
- Yot-Domínguez, C. y Gallego-Domínguez, C. (2016). Fomentar el aprendizaje autorregulado con tecnologías en el contexto universitario. Edunovatic 2016. I Congreso Virtual Internacional de Educación, Innovación y TIC. Recuperado de https://dialnet.unirioja.es/servlet/articulo?codigo=5792700
- Youngju, L., Jaeho, Ch. y Taehyum, K. (2013). Discriminating factors between completers of and dropouts from online learning courses. British Journal of Educational Technology, 44(2), 328-337. https://doi.org/10.1111/j.1467-8535.2012.01306.x