El sistema inmune y el microambiente tumoral: componentes y función

  1. Monserrat Sanz, J. 1
  2. Gómez Lahoz, A.M. 2
  3. Silva, A. 3
  1. 1 Laboratorio de Enfermedades del Sistema Inmune. Departamento de Medicina y Especialidades Médicas. Facultad de Medicina. Universidad de Alcalá. Alcalá de Henares. Madrid. España Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS). Madrid. España
  2. 2 Laboratorio de Enfermedades del Sistema Inmune. Departamento de Medicina y Especialidades Médicas. Facultad de Medicina. Universidad de Alcalá. Alcalá de Henares. Madrid. España
  3. 3 Consejo Superior de Investigaciones Científicas (CSIC). Madrid. España
Revista:
Medicine: Programa de Formación Médica Continuada Acreditado

ISSN: 0304-5412

Año de publicación: 2021

Título del ejemplar: Enfermedes del sistema inmune (VI)

Serie: 13

Número: 33

Páginas: 1932-1941

Tipo: Artículo

DOI: 10.1016/J.MED.2021.05.006 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: Medicine: Programa de Formación Médica Continuada Acreditado

Resumen

La sociedad actual experimenta un preocupante aumento progresivo de la incidencia de tumores. Este incremento es atribuible a varios factores que están en discusión, algunos inevitables, como la edad, el fondo genético del individuo, los factores ambientales, las infecciones y otras patologías concomitantes, y otros como la dieta, el tabaco y el alcohol que dependen de nuestra conducta. El microambiente que se genera en los tumores sólidos es muy heterogéneo y complejo, y está constituido por células cancerosas, necróticas, estromales e inmunes. En esta breve revisión analizaremos el microentorno tumoral (TME) desde diferentes puntos de vista, incluyendo su grado de inflamación, la regulación de la angiogénesis y, principalmente, la presencia de distintos tipos de células estromales y del sistema inmune, que forman parte de una compleja interacción celular, las cuales permiten el reclutamiento al área tumoral de nuevas células tanto protumorales como antitumorales que condicionan su crecimiento, desarrollo y capacidad de metástasis. Las células de la TME poseen fenotipos inmunológicos y capacidades distintas que influyen en la progresión de la enfermedad. Los avances en la comprensión del comportamiento de los componentes del microambiente en el que se desarrollan los tumores son clave para poder entender su evolución, el pronóstico de los pacientes y, por lo tanto, sus posibles tratamientos.

Referencias bibliográficas

  • LeBleu VS. Imaging the tumor microenvironment. Cancer J. 2015;21(3):174-8.
  • Borros A. Tumor microenviroment. Medicina. 2020;56(1):15.
  • Alkasalias T, Moyano Galceran L, Arsenian Henriksson M, Lehti K. Fibroblasts in the tumor microenvironment: shield or spear? Int J Mol Sci. 2018;19(5):1532.
  • Tripathi M, Billet S, Bhowmick NA. Understanding the role of stromal fibroblasts in cancer progression. Cell Adh Migr. 2012;6(3):231-5.
  • Fu C, Jiang A. Dendritic cells and CD8 T cell immunity in tumor microenviroment. Front Immunol. 2018;9:3058.
  • Zhou J, Tang Z, Gao S, Li C, Feng Y, Zhou X. Tumor associated macrophages: recent insights and therapies. Front Oncol. 2020;10:188.
  • Lindenmeyer M, Noessner E, Nelson PJ, Segerer S. Dendritic cells in experimental renal inflammation Part I. Nephron Exp Nephrol. 2011; 119(4):e83-e90.
  • Noessner E, Lindenmeyer M, Nelson PJ, Segerer S. Dendritic cells in human renal inflammation Part II. Nephron Exp Nephrol. 2011;119(4): e91-e98.
  • O’Keeffe M, Mok WH, Radford KJ. Human dendritic cell sub-sets and function in health and disease. Cell Mol Life Sci. 2015; 72(22):4309-25.
  • Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. 2013;31:563-604.
  • Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L. Polarization of tumor associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell. 2009;16(3):183-94.
  • Tcyganov E, Mastio J, Chen E, Gabrilovich DI. Plasticity of myeloid-derived suppressor cells in cancer. Curr Opin Immunol. 2018;51:76-82.
  • Gabrilovich DI. Myeloid derived suppressor cells. Cancer Immunol Res. 2017;5(1):3-8.
  • Gabrilovich DI, Nagaraj S. Myeloid derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162-74.
  • Tugues S, Ducimetiere L, Friebel E, Becher B. Innate lymphoid cells as regulators of the tumor microenvironment. Semin Immunol. 2019;41: 101270.
  • Terren I, Orrantia A, Vitalle J, Zenarruzabeitia O, Borrego F. NK cell metabolism and tumor microenvironment. Front Immunol. 2019;10:2278.
  • Russick J, Torset C, Hemery E, Cremer I. NK cells in the tumor microenvironment: Prognostic and theranostic impact. Recent advances and trends. Semin Immunol. 2020;48:101407.
  • Russick J, Joubert PE, Gillard Bocquet M, Torset C, Meylan M, Petitprez F. Natural killer cells in the human lung tumor microenvironment display immune inhibitory functions. J Immunother Cancer. 2020; 8(2):e001054.
  • Dadey RE, Workman CJ, Vignali DAA. Regulatory T Cells in the Tumor Microenvironment. Adv Exp Med Biol. 2020;1273:105-34.
  • Wang L, Xiong Y, Bosselut R. Maintaining CD4-CD8 lineage integrity in T cells: where plasticity serves versatility. Semin Immunol. 2011;23(5): 360-7.
  • Liu M, Sun Q, Wang J, Wei F, Yang L, Ren X. A new perspective: Exploring future therapeutic strategies for cancer by understanding the dual role of B lymphocytes in tumor immunity. Int J Cancer. 2019;144(12):2909-17.
  • Bruno TC, Ebner PJ, Moore BL, Squalls OG, Waugh KA, Eruslanov EB. Antigen presenting intratumoral B cells affect CD4(+) TIL phenotypes in non small cell lung cancer patients. Cancer Immunol Res. 2017;5(10):898-907.
  • Liang H, Chu X, Zhao J, Xing G, Si Y. Elevated peripheral blood B lymphocytes and CD3+CD4-CD8 T lymphocytes in patients with non small cell lung cancer: A preliminary study on peripheral immune profile. Oncol Lett. 2018;15(6):8387-95.
  • Ziebart A, Huber U, Jeske S, Laban S, Doescher J, Hoffmann TK. The influence of chemotherapy on adenosine producing B cells in patients with head and neck squamous cell carcinoma. Oncotarget. 2018; 9(5):5834-47.
  • Wang SS, Liu W, Ly D, Xu H, Qu L, Zhang L. Tumor infiltrating B cells: their role and application in antitumor immunity in lung cancer. Cell Mol Immunol. 2018;1:1-10.
  • Wouters MCA, Nelson BH. Prognostic significance of tumor infiltrating B cells and plasma cells in human cancer. Clin Cancer Res. 2018;24(24): 6125-35.
  • Cabrita R, Lauss M, Sanna A, Donia M, Skaarup LM, Mitra S. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature. 2020;577(7791):561-5.
  • Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020;577(7791):549-55.
  • Petitprez F, de Reyniès A, Keung EZ, Chen TW, Sun CM, Calderaro J. B cells are associated with survival and immunotherapy response in sarcoma. Nature. 2020;577(7791):556-60.
  • Sautes Fridman C, Petitprez F, Calderaro J, Fridman WH. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer. 2019;19(6):307-25.
  • Walker C, Mojares E, Del Río Hernández A. Role of extracellular matrix in development and cancer progression. Int J Mol Sci. 2018;19(10):3028.
  • Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18(3):197-218.
  • Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39(4):782-95.
  • Irving M, Vuillefroy de SR, Scholten K, Dilek N, Coukos G. Engineering chimeric antigen receptor t-cells for racing in solid tumors: don’t forget the fuel. Front Immunol. 2017;8:267.
  • Corbet C, Feron O. Tumour acidosis: from the passenger to the driver’s seat. Nat Rev Cancer. 2017;17(10):577-93