Recent developments in the theory of Lorentz spaces and weighted inequalities

  1. Raposo, José A.
  2. Soria, Javier
  3. Carro, María J.
Revista:
Memoirs of the American Mathematical Society

ISSN: 0065-9266 1947-6221

Año de publicación: 2007

Volumen: 187

Número: 877

Páginas: 0-0

Tipo: Artículo

DOI: 10.1090/MEMO/0877 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Memoirs of the American Mathematical Society

Resumen

The main objective of this work is to bring together two well known and, a priori, unrelated theories dealing with weighted inequalities for the Hardy-Littlewood maximal operator M, and thus, we consider the boundedness of M in the weighted Lorentz space Λpu(w). Two examples are historically relevant as a motivation: If w=1, this corresponds to the study of the boundedness M:Lp(u)⟶Lp(u), which was characterized by B. Muckenhoupt, giving rise to the so called Ap weights. The second case is when we take u=1. This is a more recent theory, and was completely solved by M.A. Ariño and B. Muckenhoupt in 1991. It turns out that the boundedness $M:\llo\longrightarrow\llo,$ can be seen to be equivalent to the boundedness of the Hardy operator A restricted to decreasing functions of Lp(w). The class of weights satisfying this boundedness is known as Bp. Even though the Ap and Bp classes enjoy some similar features, they come from very different theories, and so are the techniques used on each case: Calderón--Zygmund decompositions and covering lemmas for Ap, rearrangement invariant properties and positive integral operators for Bp. It is our aim to give a unified version of these two theories. Contrary to what one could expect, the solution is not given in terms of the limiting cases above considered (i.e., u=1 and w=1), but in a rather more complicated condition, which reflects the difficulty of estimating the distribution function of the Hardy-Littlewood maximal operator with respect to general measures.

Referencias bibliográficas

  • G.D. Allen, Duals of Lorentz spaces, Pacific J. Math. 177 (1978), 287–291.
  • M.A. Ariño, R. Eldeeb, and N.T. Peck, The Lorentz sequence spaces d(w,p) where w is increasing, Math. Ann. 282 (1988), 259–266.
  • M.A. Ariño and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc. 320 (1990), 727–735.
  • M.A. Ariño and B. Muckenhoupt, A characterization of the dual of the classical Lorentz sequence space d(w,q), Proc. Amer. Math. Soc. 102 (1991), 87–89.
  • S. Barza, L.E. Persson, and J. Soria, Sharp weighted multidimensional integral inequalities for monotone functions, Math. Nachr. 210 (2000), 43–58.
  • C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988.
  • J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, New York, 1976.
  • J.R. Calder and J.B. Hill, A collection of sequence spaces, Trans. Amer. Math. Soc. 152 (1970), 107–118.
  • M.J. Carro, A. García del Amo, and J. Soria, Weak-type weights and normable Lorentz spaces, Proc. Amer. Math. Soc. 124 (1996), 849–857.
  • M.J. Carro, L. Pick, J. Soria, and V. Stepanov, On embeddings between classical Lorentz spaces, Math. Inequal. Appl. 4 (2001), 397–428.
  • M.J. Carro and J. Soria, Weighted Lorentz spaces and the Hardy operator, J. Funct. Anal. 112 (1993), 480–494.
  • M.J. Carro and J. Soria, Boundedness of some integral operators, Canad. J. Math. 45 (1993), 1155–1166.
  • M.J. Carro and J. Soria, The Hardy-Littlewood maximal function and weighted Lorentz spaces, J. London Math. Soc. 55 (1997), 146–158. J. Cerdà and J. Martín, Interpolation restricted to decreasing functions and Lorentz spaces, Proc. Edinburgh Math. Soc. 42 (1999), 243–256.
  • H.M. Chung, R.A. Hunt, and D.S. Kurtz, The Hardy-Littlewood maximal function on L(p,q) spaces with weights, Indiana Univ. Math. J. 31 (1982), 109–120.
  • R.R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250.
  • M. Cwikel, On the conjugates of some function spaces, Studia Math. 45 (1973), 49–55.
  • M. Cwikel, The dual of weak Lp, Ann. Inst. Fourier (Grenoble) 25 (1975), 81–126.
  • M. Cwikel and Y. Sagher, L(p,∞), Indiana Univ. Math. J. 21 (1972), 781–786.
  • J. García Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, vol. 46, North-Holland, 1985.
  • A.J.H. Garling, A class of reflexive symmetric BK-spaces, Canad. J. Math. 21 (1969), 602–608.
  • Haaker, On the conjugate space of Lorentz space, University of Lund (1970).
  • H. Heinig and L. Maligranda, Weighted inequalities for monotone and concave functions, Studia Math. 116 (1995), 133–165.
  • R.A. Hunt, On L(p,q) spaces, Enseignement Math. 12 (1966), 249–276.
  • R.A. Hunt and D.S. Kurtz, The Hardy-Littlewood maximal function on L(p,1), Indiana Univ. Math. J. 32 (1983), 155–158.
  • G. Köthe, Topological Vector Spaces I, Springer-Verlag, 1969.
  • S.G. Krein, Ju.I. Petunin, and E.M. Semenov, Interpolation of Linear Operators, Transl. Math. Monographs, vol. 54, 1982.
  • Q. Lai, A note on weighted maximal inequalities, Proc. Edimburgh Math. Soc. 40 (1997), 193–205.
  • M.A. Leckband and C.J. Neugebauer, A general maximal operator and the Ap-condition, Trans. Amer. Math. Soc. 275 (1983), 821–831.
  • M.A. Leckband and C.J. Neugebauer, Weighted iterates and variants of the Hardy-Littlewood maximal operator, Trans. Amer. Math. Soc. 279 (1983), 51–61.
  • G.G. Lorentz, Some new functional spaces, Ann. of Math. 51 (1950), 37–55.
  • G.G. Lorentz, On the theory of spaces Λ, Pacific J. Math. 1 (1951), 411–429.
  • B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–227.
  • B. Muckenhoupt and R.L. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–275.
  • M. Nawrocki and A. Ortyński, The Mackey topology and complemented subspaces of Lorentz sequence spaces d(w,p) for 0<p<1. Trans. Amer. Math. Soc. 287 (1985), 713–722.
  • C.J. Neugebauer, Weighted norm inequalities for average operators of monotone functions, Publ. Mat. 35 (1991), 429–447.
  • C.J. Neugebauer, Some classical operators on Lorentz spaces, Forum Math. 4 (1992), 135–146.
  • N. Popa, Basic sequences and subspaces in Lorentz sequence spaces without local convexity, Trans. Amer. Math. Soc. 263 (1981), 431–456.
  • S. Reiner, On the duals of Lorentz function and sequence spaces, Indiana Univ. Math. J. 31 (1982), 65–72.
  • W. Rudin, Functional Analysis, McGraw-Hill, Inc. International Series in Pure and Applied Mathematics, 1991.
  • E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), 145–158.
  • G. Sinnamon and V. Stepanov, The weighted Hardy inequality: new proofs and the case p=1, J. London Math. Soc. 154 (1996), 89–101. J. Soria, Lorentz spaces of weak-type, Quart. J. Math. Oxford 49 (1998), 93–103.
  • E.M. Stein, Harmonic Analysis. Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, 1993.
  • E.M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1971.
  • V. Stepanov, Integral operators on the cone of monotone functions, Institute for Applied Mathematics. F-E.B. of the USSR Academy of Sciences, Khabarovsk, 1991.
  • V. Stepanov, The weighted Hardy's inequality for nonincreasing functions, Trans. Amer. Math. Soc. 338 (1993), 173–186.