El mercado de criptomonedas. Un análisis de web

  1. Carlos Jaureguizar Francés 1
  2. Pilar Grau-Carles 1
  3. Diego Jaureguizar Arellano 2
  1. 1 Universidad Rey Juan Carlos
    info

    Universidad Rey Juan Carlos

    Madrid, España

    ROR https://ror.org/01v5cv687

  2. 2 Universidad Pontificia Comillas
    info

    Universidad Pontificia Comillas

    Madrid, España

    ROR https://ror.org/017mdc710

Revista:
Esic market

ISSN: 0212-1867

Any de publicació: 2018

Número: 161

Pàgines: 569-598

Tipus: Article

DOI: 10.7200/ESICM.161.0493.4E DIALNET GOOGLE SCHOLAR

Altres publicacions en: Esic market

Resum

En este trabajo se estudian las características de las series de precios diarios de 16 diferentes criptomonedas entre julio de 2017 y febrero de 2018. Las metodologías utilizadas para el análisis son el llamado Minimum Spanning Tree (MST) y el análisis jerárquico a través del dendograma, obtenidos ambos a partir de las correlaciones de Pearson entre los rendimientos diarios. Esta metodología permite visualizar las relaciones de mercado entre los activos analizados identificando una alta correlación entre los movimientos de los precios de todas las monedas. Además, se ha podido identificar la posición de Ethereum como moneda de referencia en el mercado de criptomonedas, en lugar de Bitcoin, como cabría esperar por su popularidad y volumen de cotización.

Referències bibliogràfiques

  • Aste, T., Shaw, W. y Di Matteo, T., 2010, “Correlation structure and dynamics in volatile markets”. New Journal of Physics, 12(8), 085009. https://doi.org/10.1088/1367-2630/12/8/085009.
  • Baek, C. y Elbeck, M., 2015, “Bitcoins as an investment or speculative vehicle? A first look”. Applied Economics Letters, 22(1), 30-34. https://doi.org/10.1080/13504851.2014.916379.
  • Balcilar, M., Bouri, E., Gupta, R. y Roubaud, D., 2017, “Can volume predict Bitcoin returns and volatility? A quantiles-based approach”. Economic Modelling, 64, 74-81. https://doi.org/10.1016/j.econmod.2017.03.019.
  • Birch, J., Pantelous, A. A. y Soramäki, K., 2016, “Analysis of correlation based networks representing DAX 30 stock price returns”. Computational Economics, 47(4), 501–525. https://doi.org/10.1007/s10614-015-9481-z.
  • Bonanno, G., Vandewalle, N. y Mantegna, R. N., 2000, “Taxonomy of stock market indices”. Physical Review E, 62(6), R7615. https://doi.org/10.1103/PhysRevE.62.R7615.
  • Bouoiyour, J. y Selmi, R., 2017, “Ether: Bitcoin’s competitor or ally?”. arXiv preprint arXiv:1707.07977.
  • Chu, J., Chan, S., Nadarajah, S. y Osterrieder, J., 2017, “GARCH modelling of cryptocurrencies”. Journal of Risk and Financial Management, 10(4), 17. https:// doi.org/10.3390/jrfm10040017.
  • Feng, W., Wang, Y. y Zhang, Z., 2018, “Can cryptocurrencies be a safe haven: a tail risk perspective analysis”. Applied Economics, 1-18. https://doi.org/10.1080/00 036846.2018.1466993.
  • Gkillas, K. y Katsiampa, P., 2018, “An application of extreme value theory to cryptocurrencies”. Economics Letters, 164, 109-111. https://doi.org/10.1016/j.econlet.2018.01.020.
  • Huynh, T. L. D., Nguyen, S. P. y Duong, D., 2018, January, “Contagion Risk Measured by Return Among Cryptocurrencies”. In International Econometric Conference of Vietnam (pp. 987-998). Springer, Cham.
  • Kwapień, J., Gworek, S., Drożdż, S. y Górski, A., 2009, “Analysis of a network structure of the foreign currency exchange market”. Journal of Economic Interaction and Coordination, 4(1), 55-72. https://doi.org/10.1007/s11403-009-0047-9.
  • Katsiampa, P., 2017, “Volatility estimation for Bitcoin: A comparison of GARCH models”. Economics Letters, 158, 3-6. https://doi.org/10.1016/j.econlet.2017.06. 023.
  • Katsiampa, P., Gkillas, K. y Longin, F., 2018, May 01, “Cryptocurrency Market Activity During Extremely Volatile Periods”. Available at SSRN: https://ssrn.com/ abstract=3220781 or http://dx.doi.org/10.2139/ssrn.3220781.
  • Kruskal, J. B., 1956, “On the shortest spanning subtree of a graph and the traveling salesman problem”. Proceedings of the American Mathematical society, 7(1), 48-50. 2. https://doi.org/10.1090/S0002-9939-1956-0078686-7.
  • Mantegna, R. N., 1999, “Hierarchical structure in financial markets”. The European Physical Journal B-Condensed Matter and Complex Systems, 11(1), 193197. https://doi.org/10.1007/s100510050929.
  • Mantegna, R. N. y Stanley, H. E., 1999, Introduction to econophysics: correlations and complexity in finance. Cambridge University Press.
  • McDonald, M., Suleman, O., Williams, S., Howison, S. y Johnson, N. F., 2005, “Detecting a currency’s dominance or dependence using foreign exchange network trees”. Physical Review E, 72(4), 046106. https://doi.org/10.1103/PhysRevE.72.046106.
  • Naylor, M. J., Rose, L. C. y Moyle, B. J., 2007, “Topology of foreign exchange markets using hierarchical structure methods”. Physica A: Statistical Mechanics and its Applications, 382(1), 199-208. https://doi.org/10.1016/j.physa.2007.02.019.
  • Onnela, J. P., Chakraborti, A., Kaski, K. y Kertesz, J., 2003, “Dynamic asset trees and Black Monday”. Physica A: Statistical Mechanics and its Applications, 324(1-2), 247-252. https://doi.org/10.1016/S0378-4371(02)01882-4.
  • Osterrieder, J., Strika, M. y Lorenz, J., 2017, “Bitcoin and cryptocurrencies not for the faint-hearted”, International Finance and Banking, 4(1) 56. https://doi. org/10.5296/ifb.v4i1.10451.
  • Phillip, A., Chan, J. y Peiris, S., 2018, “A new look at Cryptocurrencies”. Economics Letters, 163, 6-9. https://doi.org/10.1016/j.econlet.2017.11.020.
  • Song, D. M., Tumminello, M., Zhou, W. X. y Mantegna, R. N., 2011, “Evolution of worldwide stock markets, correlation structure, and correlation-based graphs”. Physical Review E, 84(2), 026108. https://doi.org/10.1103/PhysRevE.84.026108.
  • Tse, C. K., Liu, J. y Lau, F. C. M., 2010, “A network perspective of the stock market”. Journal of Empirical Finance, 17(4), 659-667. doi:10.1016/j.jempfin.2010.04.008.
  • Urquhart, A., 2017, “Price clustering in Bitcoin”, Economics letters, 159, 145-148. https://doi.org/10.1016/j.econlet.2017.07.035.
  • Vizgunov, A., Goldengorin, B., Kalyagin, V., Koldanov, A., Koldanov, P. y Pardalos, P. M., 2014, “Network approach for the Russian stock market”. Computational Management Science, 11(1-2), 45-55. https://doi.org/10.1007/s10287-013-0165-7.
  • Wang, G. J., Xie, C. y Stanley, H. E., 2018, “Correlation structure and evolution of world stock markets: Evidence from Pearson and partial correlation-based networks”. Computational Economics, 51(3), 607-635. https://doi.org/10.1007/ s10614-016-9627-7.