El mercado de criptomonedas. Un análisis de web

  1. Carlos Jaureguizar Francés 1
  2. Pilar Grau-Carles 1
  3. Diego Jaureguizar Arellano 2
  1. 1 Universidad Rey Juan Carlos
    info

    Universidad Rey Juan Carlos

    Madrid, España

    ROR https://ror.org/01v5cv687

  2. 2 Universidad Pontificia Comillas
    info

    Universidad Pontificia Comillas

    Madrid, España

    ROR https://ror.org/017mdc710

Journal:
Esic market

ISSN: 0212-1867

Year of publication: 2018

Issue: 161

Pages: 569-598

Type: Article

DOI: 10.7200/ESICM.161.0493.4E DIALNET GOOGLE SCHOLAR

More publications in: Esic market

Abstract

In this paper we examine the characteristics of the daily price series of 16 different cryptocurrencies between July 2017 and February 2018. The methodologies used for the analysis are the so-called Minimum Spanning Tree (MST) and hierarchical analysis by dendrogram, both obtained Pearson correlations between daily returns. This methodology visualizes the market relationships between the assets analyzed, identifying a high correlation between price movements for all the currencies. In addition, it has been possible to identify Ethereum’s position as a benchmark currency in the cryptocurrency market, rather than Bitcoin, as one might expect, due to its popularity and trading volume.

Bibliographic References

  • Aste, T., Shaw, W. y Di Matteo, T., 2010, “Correlation structure and dynamics in volatile markets”. New Journal of Physics, 12(8), 085009. https://doi.org/10.1088/1367-2630/12/8/085009.
  • Baek, C. y Elbeck, M., 2015, “Bitcoins as an investment or speculative vehicle? A first look”. Applied Economics Letters, 22(1), 30-34. https://doi.org/10.1080/13504851.2014.916379.
  • Balcilar, M., Bouri, E., Gupta, R. y Roubaud, D., 2017, “Can volume predict Bitcoin returns and volatility? A quantiles-based approach”. Economic Modelling, 64, 74-81. https://doi.org/10.1016/j.econmod.2017.03.019.
  • Birch, J., Pantelous, A. A. y Soramäki, K., 2016, “Analysis of correlation based networks representing DAX 30 stock price returns”. Computational Economics, 47(4), 501–525. https://doi.org/10.1007/s10614-015-9481-z.
  • Bonanno, G., Vandewalle, N. y Mantegna, R. N., 2000, “Taxonomy of stock market indices”. Physical Review E, 62(6), R7615. https://doi.org/10.1103/PhysRevE.62.R7615.
  • Bouoiyour, J. y Selmi, R., 2017, “Ether: Bitcoin’s competitor or ally?”. arXiv preprint arXiv:1707.07977.
  • Chu, J., Chan, S., Nadarajah, S. y Osterrieder, J., 2017, “GARCH modelling of cryptocurrencies”. Journal of Risk and Financial Management, 10(4), 17. https:// doi.org/10.3390/jrfm10040017.
  • Feng, W., Wang, Y. y Zhang, Z., 2018, “Can cryptocurrencies be a safe haven: a tail risk perspective analysis”. Applied Economics, 1-18. https://doi.org/10.1080/00 036846.2018.1466993.
  • Gkillas, K. y Katsiampa, P., 2018, “An application of extreme value theory to cryptocurrencies”. Economics Letters, 164, 109-111. https://doi.org/10.1016/j.econlet.2018.01.020.
  • Huynh, T. L. D., Nguyen, S. P. y Duong, D., 2018, January, “Contagion Risk Measured by Return Among Cryptocurrencies”. In International Econometric Conference of Vietnam (pp. 987-998). Springer, Cham.
  • Kwapień, J., Gworek, S., Drożdż, S. y Górski, A., 2009, “Analysis of a network structure of the foreign currency exchange market”. Journal of Economic Interaction and Coordination, 4(1), 55-72. https://doi.org/10.1007/s11403-009-0047-9.
  • Katsiampa, P., 2017, “Volatility estimation for Bitcoin: A comparison of GARCH models”. Economics Letters, 158, 3-6. https://doi.org/10.1016/j.econlet.2017.06. 023.
  • Katsiampa, P., Gkillas, K. y Longin, F., 2018, May 01, “Cryptocurrency Market Activity During Extremely Volatile Periods”. Available at SSRN: https://ssrn.com/ abstract=3220781 or http://dx.doi.org/10.2139/ssrn.3220781.
  • Kruskal, J. B., 1956, “On the shortest spanning subtree of a graph and the traveling salesman problem”. Proceedings of the American Mathematical society, 7(1), 48-50. 2. https://doi.org/10.1090/S0002-9939-1956-0078686-7.
  • Mantegna, R. N., 1999, “Hierarchical structure in financial markets”. The European Physical Journal B-Condensed Matter and Complex Systems, 11(1), 193197. https://doi.org/10.1007/s100510050929.
  • Mantegna, R. N. y Stanley, H. E., 1999, Introduction to econophysics: correlations and complexity in finance. Cambridge University Press.
  • McDonald, M., Suleman, O., Williams, S., Howison, S. y Johnson, N. F., 2005, “Detecting a currency’s dominance or dependence using foreign exchange network trees”. Physical Review E, 72(4), 046106. https://doi.org/10.1103/PhysRevE.72.046106.
  • Naylor, M. J., Rose, L. C. y Moyle, B. J., 2007, “Topology of foreign exchange markets using hierarchical structure methods”. Physica A: Statistical Mechanics and its Applications, 382(1), 199-208. https://doi.org/10.1016/j.physa.2007.02.019.
  • Onnela, J. P., Chakraborti, A., Kaski, K. y Kertesz, J., 2003, “Dynamic asset trees and Black Monday”. Physica A: Statistical Mechanics and its Applications, 324(1-2), 247-252. https://doi.org/10.1016/S0378-4371(02)01882-4.
  • Osterrieder, J., Strika, M. y Lorenz, J., 2017, “Bitcoin and cryptocurrencies not for the faint-hearted”, International Finance and Banking, 4(1) 56. https://doi. org/10.5296/ifb.v4i1.10451.
  • Phillip, A., Chan, J. y Peiris, S., 2018, “A new look at Cryptocurrencies”. Economics Letters, 163, 6-9. https://doi.org/10.1016/j.econlet.2017.11.020.
  • Song, D. M., Tumminello, M., Zhou, W. X. y Mantegna, R. N., 2011, “Evolution of worldwide stock markets, correlation structure, and correlation-based graphs”. Physical Review E, 84(2), 026108. https://doi.org/10.1103/PhysRevE.84.026108.
  • Tse, C. K., Liu, J. y Lau, F. C. M., 2010, “A network perspective of the stock market”. Journal of Empirical Finance, 17(4), 659-667. doi:10.1016/j.jempfin.2010.04.008.
  • Urquhart, A., 2017, “Price clustering in Bitcoin”, Economics letters, 159, 145-148. https://doi.org/10.1016/j.econlet.2017.07.035.
  • Vizgunov, A., Goldengorin, B., Kalyagin, V., Koldanov, A., Koldanov, P. y Pardalos, P. M., 2014, “Network approach for the Russian stock market”. Computational Management Science, 11(1-2), 45-55. https://doi.org/10.1007/s10287-013-0165-7.
  • Wang, G. J., Xie, C. y Stanley, H. E., 2018, “Correlation structure and evolution of world stock markets: Evidence from Pearson and partial correlation-based networks”. Computational Economics, 51(3), 607-635. https://doi.org/10.1007/ s10614-016-9627-7.