3D printing of molds for the creation of facsimiles and volumetric reintegrations in wax anatomical sculptures

  1. Sterp Moga, Emanuel 1
  2. Sánchez-Ortiz, Alicia 1
  3. Hernández-Muñoz, Óscar 2
  1. 1 Universidad Complutense de Madrid. Facultad de Bellas Artes. Departamento de Pintura y Conservación-Restauración.
  2. 2 Universidad Complutense de Madrid. Facultad de Bellas Artes. Departamento de Diseño e Imagen.
Revista:
Heritage Science

ISSN: 2050-7445

Año de publicación: 2022

Volumen: 10

Número: 1

Páginas: 16

Tipo: Artículo

DOI: 10.1186/S40494-022-00838-8 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Heritage Science

Resumen

In recent years, 3D printing technologies have had a considerable impact on the field of conservation and restorationof cultural heritage. Professionals in this sector have been provided with exploratory tools for documenting, analyzing,intervening, and preserving objects and works of art that make up our history. This research focuses on finding themost suitable material along with the ideal printing position that could provide molds for the production of anatomi‑cal wax facsimiles that guarantee maximum quality and fidelity when compared to its original. These replicas andfragments allow conservator‑restorers to volumetrically reintegrate while testing different options before applyingdirect treatment to the works. The results obtained from testing on different types of printing materials as well as thepositives achieved from them are presented.

Información de financiación

Financiadores

  • Ministry of Science and Innovation (Spain), FSE European Social Fund and the State Research Agency
    • PRE2019-087870
  • Ministry of Science, Innovation and Universities (Spain) within the State Program of Knowledge Generation and Scientific and Technological Strengthening R&D+i, State Subprogram of Knowledge Generation
    • PGC2018-098396-B-100

Referencias bibliográficas

  • Hoon Jo Y, Hong S, Yeon Jo S, Mi KY. Noncontact restoration of missing parts of stone Buddha statue based on three-dimensional virtual modeling and assembly simulation. Herit Sci. 2020;8:103. https://doi.org/10.1186/s40494-020-00450-8.
  • Cole G, Kingham E, Waldron T. Printing pathology: a case study in presenting pathological human skeletal remains for education and display. J Inst Conserv. 2019;42:18–33. https://doi.org/10.1080/19455224.2018.1550431.
  • Hoon Jo Y, Hong S. Application of three-dimensional scanning, haptic modeling, and printing technologies for restoring damaged artifacts. J Conserv Sci. 2019;35:71–80. https://doi.org/10.12654/jcs.2019.35.1.08.
  • Hernández-Munoz Ó, Sánchez-Ortiz A, Matia-Martin P. Anatomía animal. Técnicas digitales para la reconstrucción escultórica de la apariencia original de un modelo de cera del siglo XIX. Intervención. 2019;19:64–76. https://doi.org/10.30763/intervencion.2019.19.209.
  • Ballarin M, Balletti C, Vernier P. Replicas in cultural heritage: 3d printing and the museum experience. Int Arch Photogramm Remote Sens Spatial Inf Sci. 2018;XLII–2:55–62. https://doi.org/10.5194/isprs-archives-XLII-2-55-2018.
  • Balletti C, Ballarian M, Guerra F. 3D printing: state of the art and future perspectives. J Cult Herit. 2017;26:172–82. https://doi.org/10.1016/j.culher.2017.02.010.
  • Squires N. Stone sculptures smashed by Isil in ancient city of Palmyra restored to former glory by Italian experts. The Telegraph, February 16 (2017). https://www.telegraph.co.uk/news/2017/02/16/stone-sculptures-smashed-isil-ancient-city-palmyra-restored/. Accessed Jan 18, 2018.
  • Adamia A, Ballettib C, Fassi F, Fregonesea L, Guerrab F, Taffurellia L, Vernier P. The bust of Francesco II Gonzaga: from digital documentation to 3D printing. ISPRS Ann Photogramm Remote Sens Spatial Inform Sci. 2015;II-5/W3:9–15. https://doi.org/10.5194/isprsannals-II-5-W3-9-2015.
  • Alderighi T, Malomo L, Giorgi D, Pietroni N, Bickel B, Cignoni P. Metamolds: computational design of silicone molds. Assoc Comput Machin. 2018;37:4.
  • Herholz P, Matusik W, Marc A. Approximating free-form geometry with height fields for manufacturing. Computer Graphics Forum. 2015;34:239–51. https://doi.org/10.1111/cgf.12556.
  • Sterp Moga E, Hernández-Muñoz Ó, del Río EJ, Sánchez-Ortiz A. 3D digital technologies applied to the design and printing of auxiliary structures for fragment adhesion strategies on wax artifacts. Herit Sci. 2022;10:103. https://doi.org/10.1186/s40494-022-00737-y.
  • Hernández-Muñoz Ó, Aranda Gabrielli D, Maruri Palacín A, Sterp Moga E, Sánchez-Ortiz A. 3D digital technologies for the elaboration of a replica of a dermatological didactic model belonging to the Olavide museum from the original mold. Heritage. 2022;5:2. https://doi.org/10.3390/heritage5020039.
  • Hernández-Muñoz Ó, Sánchez-Ortiz A. Digitization and 3D printing for the reconstruction of volumetric losses in an anatomical wax model of the 18th century. Conservar Património. 2019;30:59–72. https://doi.org/10.14568/cp2018003.
  • Li Y, Zhang J. Multi-criteria GA-based Pareto optimization of building direction for rapid prototyping. Int Adv Manuf Technol. 2013;69:1819–31. https://doi.org/10.1007/s00170-013-5147-y.
  • Mohamed OA, Masood SH, Bhowmik J. Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf. 2015;3:42–53. https://doi.org/10.1007/s40436-014-0097-7.
  • Nidagundi V, Keshavamurthy R, Prakash CP. Studies on parametric optimization for fused deposition modeling process. Mater Today: Proc. 2015;2:1691–9. https://doi.org/10.1016/j.matpr.2015.07.097.
  • Zhou GL, Guo D, Jia Z, Liu S. Research on process parameter optimization of fused deposition modeling. J Dalian Univ Technol. 2002;42:446–50.
  • Gibson I, Rosen D, Stucker B. Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. 2nd ed. New York: Springer; 2015.
  • Vyavahare S, Kumar S, Panghal D. Experimental study of surface roughness, dimensional accuracy and time of fabrication of parts produced by fused deposition modelling. Rapid Prototyp J. 2020;26:1535–54. https://doi.org/10.1108/RPJ-12-2019-0315.
  • Hooshmand MJ, Mansour S, Dehghanian A. Optimization of build orientation in FFF using response surface methodology and posterior-based method. Rapid Prototyp J. 2021;27:967–94. https://doi.org/10.1108/RPJ-07-2020-0162.
  • Alexander P, Allen S, Dutta D. Part orientation and build cost determination in layered manufacturing. Comput Aided Des. 1998;30:343–56. https://doi.org/10.1016/S0010-4485(97)00083-3.
  • Zhou LY, Fu J, He Y. A review of 3D printing technologies for soft polymer materials. Adv Func Mater. 2020;30:28. https://doi.org/10.1002/adfm.202000187.
  • Song Y, Li Y, Song W, Yee K, Lee K-Y, Tagarielli V-L. Measurements of the mechanical response of unidirectional 3D-printed PLA. Mater Des. 2017;123:154–64. https://doi.org/10.1016/j.matdes.2017.03.051.
  • Arunprasath K, Vijayakumar M, Ramarao M, Arul T-G, Peniel Pauldoss S, Selwin M, Radhakrishnan B, Manikandan V. Dynamic mechanical analysis performance of pure 3D printed polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS). Mater Today Proc. 2022;50(5):1559–62. https://doi.org/10.1016/j.matpr.2021.09.113.