Biosynthesis and Biological Activity of Carbasugars

  1. Roscales García, Silvia 1
  2. Plumet Arjona, Joaquín 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Revista:
International Journal of Carbohydrate Chemistry

ISSN: 1687-9341 1687-935X

Año de publicación: 2016

Volumen: 2016

Número: 1

Páginas: 1-42

Tipo: Artículo

DOI: 10.1155/2016/4760548 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: International Journal of Carbohydrate Chemistry

Resumen

The first synthesis of carbasugars, compounds in which the ring oxygen of a monosaccharide had been replaced by a methylenemoiety, was described in 1966 by Professor G. E. McCasland’s group. Seven years later, the first true natural carbasugar (5a-carba-RD-galactopyranose) was isolated from a fermentation broth of Streptomyces sp. MA-4145. In the following decades, the chemistryand biology of carbasugars have been extensively studied. Most of these compounds show interesting biological properties,especially enzymatic inhibitory activities, and, in consequence, an important number of analogues have also been prepared inthe search for improved biological activities. The aim of this review is to give coverage on the progress made in two importantaspects of these compounds: the elucidation of their biosynthesis and the consideration of their biological properties, including theextensively studied carbapyranoses as well as the much less studied carbafuranoses.

Referencias bibliográficas

  • [1] J. L. de Paz and P. H. Seeberger, “Recent advances in carbohydrate microarrays,” QSAR and Combinatorial Science, vol. 25, no. 11, pp. 1027–1032, 2006.
  • [2] M. Miljkovic, Carbohydrates: Synthesis, Mechanisms, and Stereoelectronic Effects, Springer, 2010.
  • [3] R. V. Stick and S. J. Williams, Carbohydrates: The Essential Molecules of Life, Elsevier, New York, NY, USA, 2nd edition, 2009.
  • [4] M. Sinnott, Ed., Carbohydrate Chemistry and Biochemistry: Structure and Mechanism, RSC, 1st edition, 2007, 2nd edition, 2013.
  • [5] “Chemical reviews,” Carbohydrate Chemistry, vol. 10, no. 12, Edited by J. K. Bashkin, 2000.
  • [6] D. B. Werz and S. Vidal, Eds., Modern Synthetic Methods in Carbohydrate Chemistry. From Monosaccharides to Complex Glycoconjugates, John Wiley & Sons, New York, NY, USA, 2013.
  • [7] P. Kovac, Ed., Carbohydrate Chemistry. Proven Synthetic Methods, vol. 1, CRC Press. Taylor & Francis Group, 2011.
  • [8] G. van der Mare and J. Coreen, Eds., Carbohydrate Chemistry. Proven Synthetic Methods, vol. 2, CRC Press. Taylor & Francis Group, 2014.
  • [9] R. Roy and S. Vidal, Eds., Carbohydrate Chemistry. Proven Synthetic Methods, vol. 3, CRC Press. Taylor & Francis Group, 2015.
  • [10] Y. C. Lee and R. T. Lee, Eds., Recognition of Carbohydrates in Biological Systems. Part A: General Procedures, vol. 362 of Methods in Enzymology, Academic Press, New York, NY, USA, 2003.
  • [11] Y. C. Lee and R. T. Lee, Eds., Recognition of Carbohydrates in Biological Systems. Part B: Specific Applications, vol. 363 of Methods in Enzymology, Academic Press, New York, NY, USA, 2003.
  • [12] B. Wang and G. J. Boons, Eds., Carbohydrate Recognition. Biological Problems, Methods and Applications, Wileyohn Wiley & Sons, Bew York, NY, USA, 2011.
  • [13] P. H. Seeberger and Ch. Rademacher, Eds., Carbohydrates as Drugs, vol. 12 of Topics in Medicinal Chemistry, Springer, 2014.
  • [14] J. Jimenez-Barbero, J. Ca ´ nada, and S. Mart ˜ ´ın-Santamar´ıa, Eds., Carbohydrates in Drug Design and Discovery, vol. 43, RSC: Drug Discovery Series, 2015.
  • [15] R. A. Dwek and T. D. Butters, “Introduction: glycobiology— understanding the language and meaning of carbohydrates,” Chemical Reviews, vol. 102, no. 2, pp. 283–284, 2002.
  • [16] H. Lis and N. Sharon, “Lectins: carbohydrate-specific proteins that mediate cellular recognition,” Chemical Reviews, vol. 98, no. 2, pp. 637–674, 1998.
  • [17] V. L. Campo, V. Aragon-Leoneti, M. B. M. Teixeira, and I. Car- ´ valho, “Carbohydrates and glycoproteins: cellular recognition and drug design,” New Developments in Medicinal Chemistry, vol. 1, pp. 133–151, 2010. 30 International Journal of Carbohydrate Chemistry
  • [18] L. L. Kiessling and J. C. Grim, “Glycopolymer probes of signal transduction,” Chemical Society Reviews, vol. 42, no. 10, pp. 4476–4491, 2013.
  • [19] Y.-L. Ruan, “Sucrose metabolism: gateway to diverse carbon use and sugar signaling,” Annual Review of Plant Biology, vol. 65, pp. 33–67, 2014.
  • [20] K. Ljung, J. L. Nemhauser, and P. Perata, “New mechanistic links between sugar and hormone signalling networks,” Current Opinion in Plant Biology, vol. 25, pp. 130–137, 2015.
  • [21] J. M. Rini and H. Leffler, “Carbohydrate recognition and signaling,” in Functioning of Transmembrane Receptors in Signaling Mechanism, R. Bradshaw and E. A. Dennis, Eds., Cell Signaling Collection, chapter 13, pp. 341–347, Academic Press, New York, NY, USA, 2011.
  • [22] K. J. Doores, D. P. Gamblin, and B. G. Davis, “Exploring and exploiting the therapeutic potential of glycoconjugates,” Chemistry—A European Journal, vol. 12, no. 3, pp. 656–665, 2006.
  • [23] K. M. Koeller and C. H. Wong, “The concept of ‘Medicinal Glycoscience’ was developed,” in Emerging Themes in Medicinal Glycoscience, vol. 18 of Nature Biotechnology, pp. 835–841, 2000.
  • [24] S. J. Keding and S. J. Danishefsky, “Synthetic carbohydratebased vaccines,” in Carbohydrate-Based Drug Discovery, C.-H. Wong, Ed., chapter 14, pp. 381–406, John Wiley & Sons, New York, NY, USA, 2003.
  • [25] M.-L. Hecht, P. Stallforth, D. V. Silva, A. Adibekian, and P. H. Seeberger, “Recent advances in carbohydrate-based vaccines,” Current Opinion in Chemical Biology, vol. 13, no. 3, pp. 354–359, 2009.
  • [26] L. Morelli, L. Poletti, and L. Lay, “Carbohydrates and immunology: synthetic oligosaccharide antigens for vaccine formulation,” European Journal of Organic Chemistry, vol. 2011, no. 29, pp. 5723–5777, 2011.
  • [27] S. Bhatia, M. Dimde, and R. Haag, “Multivalent glycoconjugates as vaccines and potential drug candidates,” MedChemComm, vol. 5, no. 7, pp. 862–878, 2014.
  • [28] S. J. Danishefsky and J. R. Allen, “From the laboratory to the clinic: a retrospective on fully synthetic carbohydrate-based anticancer vaccines,” Angewandte Chemie International Edition, vol. 39, no. 5, pp. 836–863, 2000.
  • [29] “Part I: biosynthesis, structural diversity and sialoglycopathologies. Part II: tools and technique to identify and capture sialoglycans,” in Sialo Glyco Chemistry and Biology, R. Gerardy-Schahn, P. Delannoy, and M. von Itzstein, Eds., vol. 366-367 of Topics in Current Chemistry, Springer, Berlin, Germany, 2015.
  • [30] M. Pudelko, J. Bull, and H. Kunz, “Chemical and chemoenzymatic synthesis of glycopeptide selectin ligands containing sialyl Lewis X structures,” ChemBioChem, vol. 11, no. 7, pp. 904– 930, 2010.
  • [31] N. Kaila and B. E. Thomas IV, “Design and synthesis of sialyl Lewisx mimics as E- and P-selectin inhibitors,” Medicinal Research Reviews, vol. 22, no. 6, pp. 566–601, 2002.
  • [32] A. L. Majumder and B. B. Biswas, Eds., Biology of Inositols and Phosphoinositides, vol. 39 of Subcellular Biochemistry, Springer, New York, NY, USA, 2006.
  • [33] A. Kukisis, “Laboratory techniques in biochemistry and molecular biology,” in Inositol Phospholipid Metabolism and Phosphatidyl Inositol Kimases, S. Pillai and P. C. Van der Viet, Eds., chapter 5, pp. 253–334, Elsevier, New York, NY, USA, 2003.
  • [34] A. K. Menon, P. Orlean, T. Kinoshita, and F. Tamanoi, Eds., Glycosylphosphatidylinositols (GPI) Anchoring of Proteins, vol. 26 of The Enzimes, Elsevier, 2009.
  • [35] GPI, Membrane Anchors. The Much Needed Link, Edited by J. A. Dangerfield, Ch. Metamer, Bentham, 2010.
  • [36] I. Vilotijevic, S. Gutze, P. H. Seeberger, and D. V. Silva, “Chemical synthesis of GPI anchors and GPI anchored molecules,” in Modern Synthetic Methods in Carbohydrate Chemistry, D. B. Werz and S. Vidal, Eds., pp. 335–372, John Wiley & Sons, New York, NY, USA, 2014.
  • [37] Ch. Zurzolo and K. Simons, “Glycosylphosphatidylinositolanchored proteins. Membrane, organization and transport,” Biochimica et Biophysica Acta (BBA)—Biomembranes, vol. 1858, no. 4, pp. 632–639, 2016.
  • [38] G. H. Boons and K. J. Hale, Organic Synthesis with Carbohydrates, Wiley-Blackwell, 2000.
  • [39] M. M. K. Boysen, Ed., Carbohydrates Tools for Stereoselective Synthesis, John Wiley & Sons, Berlin, Germany, 2013.
  • [40] P. Sears and C.-H. Wong, “Carbohydrate mimetics: a new strategy for tackling the problem of carbohydrate-mediated biological recognition,” Angewandte Chemie—International Edition, vol. 38, no. 16, pp. 2300–2324, 1999.
  • [41] S. A. W. Gruner, E. Locardi, E. Lohof, and H. Kessler, “Carbohydrate-based mimetics in drug design: sugar amino acids and carbohydrate scaffolds,” Chemical Reviews, vol. 102, no. 2, pp. 491–514, 2002.
  • [42] D. C. Koester, A. Holkenbrink, and D. B. Werz, “Recent advances in the synthesis of carbohydrate mimetics,” Synthesis, no. 19, Article ID E27110SS, pp. 3217–3242, 2010.
  • [43] L. Cipolla and F. Peri, “Carbohydrate-based bioactive compounds for medicinal chemistry applications,” Mini-Reviews in Medicinal Chemistry, vol. 11, no. 1, pp. 39–54, 2011.
  • [44] Joint Commission on Biochemical Nomenclature, “Nomenclature of carbohydrates,” Pure and Applied Chemistry, vol. 68, pp. 1919–2008, 1996.
  • [45] O. Arjona, A. M. Gomez, J. C. L ´ opez, and J. Plumet, “Synthesis ´ and conformational and biological aspects of carbasugars,” Chemical Reviews, vol. 107, no. 5, pp. 1919–2036, 2007.
  • [46] J. Plumet, A. M. Gomez, and J. C. L ´ opez, “Synthesis of carbasug- ´ ars based on ring closing metathesis: 2000–2006,” Mini-Reviews in Organic Chemistry, vol. 4, no. 3, pp. 201–216, 2007.
  • [47] S. Jarosa, M. Nowogrodzki, M. Magdyca, and M. Potopnyk, “Carbobicyclic sugar mimics,” Journal of Carbohydrate Chemistry, vol. 37, pp. 303–325, 2012.
  • [48] R. G. Soengas, J. M. Otero, A. M. Estevez et al., “An overview ´ of key routes for the transformation of sugars into carbasugars and related compounds,” Carbohydrate Chemistry, vol. 38, pp. 263–302, 2012.
  • [49] R. Lahiri, A. A. Ansari, and Y. D. Vankar, “Recent developments in design and synthesis of bicyclic azasugars, carbasugars and related molecules as glycosidase inhibitors,” Chemical Society Reviews, vol. 42, no. 12, pp. 5102–5118, 2013.
  • [50] M. Bessieres, F. Chevrier, V. Roy, and L. A. Agrofoglio, “Recent ` progress for the synthesis of selected carbocyclic nucleosides,” Future Medicinal Chemistry, vol. 7, no. 13, pp. 1809–1828, 2015.
  • [51] P. Merino, Ed., Chemical Synthesis of Nucleoside Analogues, John Wiley & Sons, New York, NY, USA, 2013.
  • [52] M. Adinolfi, M. M. Corsaro, C. De Castro et al., “Caryose: a carbocyclic monosaccharide from Pseudomonas caryophylli,” Carbohydrate Research, vol. 284, no. 1, pp. 111–118, 1996.
  • [53] M. Adinolfi, M. M. Corsaro, C. De Castro et al., “Analysis of the polysaccharide components of the lipopolysaccharide fraction of Pseudomonas caryophylli,” Carbohydrate Research, vol. 284, no. 1, pp. 119–133, 1996. International Journal of Carbohydrate Chemistry 31
  • [54] M. Adinolfi, G. Barone, A. Iadonisi, L. Mangoni, and R. Manna, “Synthesis of caryose, the carbocyclic monosaccharide component of the lipopolysaccharide from pseudomonas caryophylli,” Tetrahedron, vol. 53, no. 34, pp. 11767–11780, 1997.
  • [55] T. D. Brock, K. M. Brock, R. T. Belly, and R. L.Weiss, “Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature,” Archiv fur Mikrobiologie ¨ , vol. 84, no. 1, pp. 54–68, 1972.
  • [56] M. de Rosa, S. de Rosa, A. Gambacorta, L. Minale, and J. D. Bullock, “Chemical structure of the ether lipids of thermophilic acidophilic bacteria of the Caldariella group,” Phytochemistry, vol. 16, no. 12, pp. 1961–1965, 1977.
  • [57] M. De Rosa, S. De Rosa, A. Gambacorta, and J. D. Bu’Lockt, “Structure of calditol, a new branched-chain nonitol, and of the derived tetraether lipids in thermoacidophile archaebacteria of the Caldariella group,” Phytochemistry, vol. 19, no. 2, pp. 249– 254, 1980.
  • [58] M. L. Bode, S. R. Buddoo, S. H. Minnaar, and C. A. du Plessis, “Extraction, isolation and NMR data of the tetraether lipid calditoglycerocaldarchaeol (GDNT) from Sulfolobus metallicus harvested from a bioleaching reactor,” Chemistry and Physics of Lipids, vol. 154, no. 2, pp. 94–104, 2008.
  • [59] E. Untersteller, B. Fritz, Y. Bli ´ eriot, and P. Sina ´ y, “The ¨ structure of calditol isolated from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius,” Comptes Rendus de l’Academie des Sciences—Series IIC-Chemistry, vol. 2, no. 7-8, pp. 429–433, 1999.
  • [60] Y. Bleriot, E. Untersteller, B. Fritz, and P. Sina ´ y, “Total synthesis ¨ of calditol: structural clarification of this typical component of Archaea order Sulfolobales,” Chemistry, vol. 8, no. 1, pp. 240– 246, 2002.
  • [61] T. W. Miller, B. H. Arison, and G. Albers Schonberg, “Isolation of a cyclitol antibiotic: 2,3,4,5-tetrahydroxycyclohexanemethanol,” Biotechnology and Bioengineering, vol. 15, no. 6, pp. 1075– 1080, 1973.
  • [62] J. Marco-Contelles, M. T. Molina, and S. Anjum, “Naturally occurring cyclohexane epoxides: sources, biological activities, and synthesis,” Chemical Reviews, vol. 104, no. 6, pp. 2857–2899, 2004.
  • [63] C. Thebtaranonth and Y. Thebtaranonth, “Naturally occurring cyclohexene oxides,” Accounts of Chemical Research, vol. 19, no. 3, pp. 84–90, 1986.
  • [64] J. Marco-Contelles, “Cyclohexane epoxides—chemistry and biochemistry of (+)-cyclophellitol,” European Journal of Organic Chemistry, no. 9, pp. 1607–1618, 2001.
  • [65] Y. Kobayashi, Glycoscience, Chemistry and Chemical Biology, vol. 3, chapter 10.3, Springer, Berlin, Germany, 2001.
  • [66] K. Tatsuta, “Total synthesis and chemical design of useful glycosidase inhibitors,” Pure and Applied Chemistry, vol. 68, no. 6, pp. 1341–1346, 1996.
  • [67] S. Ogawa and M. Kanto, “Synthesis of bio-active compounds from cyclitol derivatives provided by bioconversion of myoinositol,” Current Trends in Medicinal Chemistry, vol. 5, pp. 1–13, 2008.
  • [68] B. Fraser-Reid and J. C. Lopez, “Unsaturated sugars: a rich ´ platform for methodological and synthetic studies,” Current Organic Chemistry, vol. 13, no. 6, pp. 532–553, 2009.
  • [69] Y. Nobuji, C. Noriko, M. Takashi, U. Shigeru, A. Kenzon, and I. Michaki, “Novel herbicidal MK7607 and its manufacture with Curvularia,” Japanese Kokai Tokkyo Koho, JP, 06306000, 1994.
  • [70] A. Isogai, S. Sakuda, J. Nakayama, S. Watanabe, and A. Suzuki, “Isolation and structural elucidation of a new cyclitol derivative, streptol, as a plant growth regulator,” Agricultural and Biological Chemistry, vol. 51, no. 8, pp. 2277–2279, 1987.
  • [71] P. Sedmera, P. Halada, and S. Pospisil, “New carbasugars from Streptomyces lincolnensis,” Magnetic Resonance in Chemistry, vol. 47, no. 6, pp. 519–522, 2009.
  • [72] T. Yamada, M. Iritani, H. Ohishi et al., “Pericosines, antitumour metabolites from the sea hare-derived fungus Periconia byssoides. Structures and biological activities,” Organic and Biomolecular Chemistry, vol. 5, no. 24, pp. 3979–3986, 2007.
  • [73] V. Usami, “Synthesis of marine-derived carbasugar pericosines,” Studies in Natural Products Chemistry, vol. 41, pp. 287–319, 2014.
  • [74] P. Bayon and M. Figueredo, “The gabosine and anhydrogabo- ´ sine family of secondary metabolites,” Chemical Reviews, vol. 113, no. 7, pp. 4680–4707, 2013.
  • [75] D. H. Mac, S. Chandrasekhar, and R. Gree, “Total synthesis of ´ gabosines,” European Journal of Organic Chemistry, no. 30, pp. 5881–5895, 2012.
  • [76] M. Das and K. Manna, “Bioactive cyclohexenones: a mini review,” Current Bioactive Compounds, vol. 11, no. 4, pp. 239– 248, 2015.
  • [77] H. Chimura, H. Nakamura, T. Takita et al., “The structure of a glyoxalase I inhibitor and its chemical reactivity with SHcompounds,” The Journal of Antibiotics, vol. 28, no. 10, pp. 743– 748, 1975.
  • [78] S. Horii, T. Iwasa, and Y. Kameda, “Studies on validamycins, new antibiotics. V. Degradation studies,” The Journal of Antibiotics, vol. 24, no. 1, pp. 57–58, 1971.
  • [79] S. Horii, T. Iwasa, E. Mizuta, and Y. Kameda, “Studies on validamycins, new antibiotics. VI. Validamine, hydroxyvalidamine and validatol, new cyclitols,” Journal of Antibiotics, vol. 24, no. 1, pp. 59–63, 1971.
  • [80] Y. Kameda, N. Asano, M. Yoshikawa et al., “Valiolamine, a new 𝛼-glucosidase inhibiting aminocyclitol produced by Streptomyces hygroscopicus,” The Journal of Antibiotics, vol. 37, no. 11, pp. 1301–1307, 1984.
  • [81] Y. Kameda and S. Horii, “The unsaturated cyclitol part of the new antibiotics, the validamycins,” Journal of the Chemical Society, Chemical Communications, no. 12, pp. 746–747, 1972.
  • [82] Y. Kameda, S. Horii, and T. Yamano, “Microbial transformation of validamycins,” Journal of Antibiotics, vol. 28, no. 4, pp. 298– 306, 1975.
  • [83] Y. Kameda, N. Asano, M. Teranishi, and K. Matsui, “New cyclitols, degradation of validamycin A by Flavobacterium saccharophilum,” Journal of Antibiotics, vol. 33, no. 12, pp. 1573– 1574, 1980.
  • [84] Y. Kameda, N. Asano, M. Teranishi, M. Yoshikawa, and K. Matsui, “New intermediates, degradation of validamycin a by Flavobacterium saccharophilum,” The Journal of Antibiotics, vol. 34, no. 9, pp. 1237–1240, 1981.
  • [85] N. Asano, M. Takeuchi, K. Ninomiya, Y. Kameda, and K. Matsui, “Microbial degradation of validamycin A by Flavobacterium saccharophilum. Enzymatic cleavage of C-N linkage in validoxylamine A,” Journal of Antibiotics, vol. 37, no. 8, pp. 859–867, 1984.
  • [86] S. Ogawa, Y. Miyamoto, and A. Nakajima, “Cleavage of the imino bonds of validoxylamine A derivatives with Nbromosuccinimide,” Chemistry Letters, pp. 725–728, 1989. 32 International Journal of Carbohydrate Chemistry
  • [87] S. Ogawa, A. Nakajima, and Y. Miyamoto, “Cleavage of validoxylamine A derivatives with N-bromosuccinimide: preparation of blocked synthons useful for the construction of carbaoligosaccharides composed of imino linkages,” Journal of the Chemical Society, Perkin Transactions, vol. 1, no. 12, pp. 3287– 3290, 1991.
  • [88] H. Xu, J. Yang, L. Bai, Z. Deng, and T. Mahmud, “Genetically engineered production of 1,1󸀠 -bis-valienamine and validienamycin in Streptomyces hygroscopicus and their conversion to valienamine,” Applied Microbiology and Biotechnology, vol. 81, no. 5, pp. 895–902, 2009.
  • [89] Y.-P. Xue, Y.-G. Zheng, and Y.-C. Shen, “Enhanced production of valienamine by Stenotrophomonas maltrophilia with fedbatch culture in a stirred tank bioreactor,” Process Biochemistry, vol. 42, no. 6, pp. 1033–1038, 2007.
  • [90] Y.-S. Wang, Y.-G. Zheng, and Y.-C. Shen, “Isolation and identification of a novel valienamine-producing bacterium,” Journal of Applied Microbiology, vol. 102, no. 3, pp. 838–844, 2007.
  • [91] T. Mahmud, “The C7N aminocyclitol family of natural products,” Natural Product Reports, vol. 20, no. 1, pp. 137–166, 2003.
  • [92] T. Suami, “Synthesis of biologically active pseudo-oligosaccharides,” in Carbohydrates, H. Ogura, A. Hasegawa, and T. Suami, Eds., pp. 136–173, VCH, 1992.
  • [93] T. Iwasa, H. Yamamoto, and M. Shibata, “Studies on validamycins, new antibiotics. I. Streptomyces hygroscopicus var. limoneus nov. var., validamycin-producing organism,” Journal of Antibiotics, vol. 23, no. 12, pp. 595–602, 1970.
  • [94] T. Iwasa, E. Higashide, H. Yamamoto, and M. Shibata, “Studies on validamycins, new antibiotics. II. Production and biological properties of validamycins A and B,” Journal of Antibiotics, vol. 24, no. 2, pp. 107–113, 1971.
  • [95] S. Horii, Y. Kameda, and K. Kawahara, “Studies on validamycins, new antibiotics. 8. Isolation and characterization of validamycins C,D,E and F.,” Journal of Antibiotics, vol. 25, no. 1, pp. 48–53, 1972.
  • [96] Y. Kameda, N. Asano, K. Matsui, S. Horii, and H. Fukase, “Structures of minor components of the validamycin complex,” Journal of Antibiotics, vol. 41, no. 10, pp. 1488–1492, 1988.
  • [97] Y. Kameda, N. Asano, T. Yamaguchi, K. Matsui, S. Horii, and H. Fukase, “Validamycin G and validoxylamine G, new members of the validamycins,” Journal of Antibiotics, vol. 39, no. 10, pp. 1491–1494, 1986.
  • [98] N. Asano, Y. Kameda, K. Matsui, S. Horii, and H. Fukase, “Validamycin H, a new pseudo-tetrasaccharide antibiotic,” The Journal of Antibiotics, vol. 43, no. 8, pp. 1039–1041, 1990.
  • [99] D. D. Schmidt, W. Frommer, B. Junge et al., “𝛼-Glucosidase inhibitors—new complex oligosaccharides of microbial origin,” Naturwissenschaften, vol. 64, no. 10, pp. 535–536, 1977.
  • [100] B. Junge, F.-R. Heiker, J. Kurz, L. Muller, D. D. Schmidt, ¨ and C. Wunsche, “Untersuchungen zur struktur des ¨ 𝛼-dglucosidaseinhibitors acarbose,” Carbohydrate Research, vol. 128, no. 2, pp. 235–268, 1984.
  • [101] U. Masharani and M. S. German, “Pancreatic hormones and diabetes mellitus,” in Greenspan’s Basic & Clinical Endocrinology, D. G. Gardner and D. Shoback, Eds., chapter 17, McGrawHill Medical, 9th edition, 2011.
  • [102] J. B. Buse, K. S. Polonsky, and Ch. F. Burant, “Type 2 diabetes mellitus,” in Williams Textbook of Endocrinology, S. Melmed, K. S. Polonsky, P. R. Larsen, and H. M. Kronenberg, Eds., section 7, chapter 31, Elsevier, 12th edition, 2012.
  • [103] A. Kadziola, J.-I. Abe, B. Svensson, and R. Haser, “Crystal and molecular structure of barley 𝛼-amylase,” Journal of Molecular Biology, vol. 239, no. 1, pp. 104–121, 1994.
  • [104] M. Machius, G. Wiegand, and R. Huber, “Crystal structure of calcium-depleted Bacillus licheniformis 𝛼-amylase at 2.2 A˚ resolution,” Journal of Molecular Biology, vol. 246, no. 4, pp. 545–559, 1995.
  • [105] M. Hemker, A. Stratmann, K. Goeke et al., “Identification, cloning, expression, and characterization of the extracellular acarbose-modifying glycosyltransferase, AcbD, from Actinoplanes sp. strain SE50,” Journal of Bacteriology, vol. 183, no. 15, pp. 4484–4492, 2001.
  • [106] E. Truscheit, W. Frommer, B. Junge, L. Muller, D. Schmidt, and W. Wingeder, “Chemistry and biochemistry of microbial 𝛼-glucosidase inhibitors,” Angewandte Chemie—International Edition, vol. 20, no. 9, pp. 744–761, 1981.
  • [107] U. F. Wehmeier and W. Piepersberg, “Biotechnology and molecular biology of the 𝛼-glucosidase inhibitor acarbose,” Applied Microbiology and Biotechnology, vol. 63, no. 6, pp. 613–625, 2004.
  • [108] U. F. Wehmeier, “The biosynthesis and metabolism of acarbose in Actinoplanes sp. SE 50/110: a progress report,” Biocatalysis and Biotransformation, vol. 21, no. 4-5, pp. 279–284, 2003.
  • [109] H. Laube, “Acarbose. An update of its therapeutic use in diabetes treatment,” Clinical Drug Investigation, vol. 22, no. 3, pp. 141–156, 2002.
  • [110] A. J. Scheen, “Clinical efficacy of acarbose in diabetes mellitus: a critical review of controlled trials,” Diabetes and Metabolism, vol. 24, no. 4, pp. 311–321, 1998.
  • [111] H.-W. M. Breuer, “Review of acarbose therapeutic strategies in the long-term treatment and in the prevention of type 2 diabetes,” International Journal of Clinical Pharmacology and Therapeutics, vol. 41, no. 10, pp. 421–440, 2003.
  • [112] S. Ogawa, M. Kanto, and Y. Suzuki, “Development and medical application of unsaturated carbaglycosylamine glycosidase inhibitors,” Mini-Reviews in Medicinal Chemistry, vol. 7, no. 7, pp. 679–691, 2007.
  • [113] A. Bedekar, K. Shah, and M. Koffas, “Natural products for type II diabetes treatment,” Advances in Applied Microbiology, vol. 71, pp. 21–73, 2010.
  • [114] J. L. R´ıos, F. Francini, and G. R. Schinella, “Natural products for the treatment of type 2 diabetes mellitus,” Planta Medica, vol. 81, no. 12-13, pp. 975–994, 2015.
  • [115] A. L. Harvey, “Plant natural products in anti-diabetic drug discovery,” Current Organic Chemistry, vol. 14, no. 16, pp. 1670– 1677, 2010.
  • [116] N. S. H. N. Moorthy, M. J. Ramos, and P. A. Fernandes, “Studies on 𝛼-glucosidase inhibitors development: magic molecules for the treatment of carbohydrate mediated diseases,” Mini-Reviews in Medicinal Chemistry, vol. 12, no. 8, pp. 713–720, 2012.
  • [117] U. Ghani, “Re-exploring promising 𝛼-glucosidase inhibitors for potential development into oral anti-diabetic drugs: finding needle in the haystack,” European Journal of Medicinal Chemistry, vol. 103, pp. 133–162, 2015.
  • [118] K.-I. Fukuhara, H. Murai, and S. Murao, “Amylostatins, other amylase inhibitors produced by Streptomyces diastaticus subsp. Amylostaticus No. 2476,” Agricultural and Biological Chemistry, vol. 46, no. 8, pp. 2021–2030, 1982.
  • [119] K. Fukuhara, H. Murai, and S. Murao, “Isolation and structureactivity relationship of some amylostatins (F-1b fraction) produced by Streptomyces diastaticus subsp. Amylostaticus No. International Journal of Carbohydrate Chemistry 33 9410,” Agricultural and Biological Chemistry, vol. 46, no. 7, pp. 1941–1945, 1982.
  • [120] S. Namiki, K. Kangouri, T. Nagate, H. Hara, K. Sugita, and S. Omura, “Studies on the 𝛼-glucoside hydrolase inhibitor, adiposin. I. Isolation and physicochemical properties,” The Journal of Antibiotics, vol. 35, no. 9, pp. 1234–1236, 1982.
  • [121] S. Namiki, K. Kangouri, T. Nagate, H. Hara, K. Sugita, and S. Omura, “Studies on the 𝛼-glucoside hydrolase inhibitor, adiposin. II. Taxonomic studies on the producing microorganism,” The Journal of Antibiotics, vol. 35, no. 9, pp. 1156–1159, 1982.
  • [122] K. Kangouri, S. Namiki, T. Nagate, H. Hara, K. Sugita, and S. Omura, “Studies on the 𝛼-glucoside hydrolase inhibitor, adiposin. III. 𝛼-Glucoside hydrolase inhibitory activity and antibacterial activity in vitro,” The Journal of Antibiotics, vol. 35, no. 9, pp. 1160–1166, 1982.
  • [123] S. Namiki, K. Kangouri, T. Nagate et al., “Studies on the 𝛼- glucoside hydrolase inhibitor, adiposin. IV. Effect of adiposin on intestinal digestion of carbohydrates in experimental animals,” Journal of Antibiotics, vol. 35, no. 9, pp. 1167–1173, 1982.
  • [124] S. Ogawa, Y. Iwasawa, T. Toyokuni, and T. Suami, “Synthesis of adiposin-1, 𝛼-glucoside hydrolase inhibitor,” Chemistry Letters, vol. 12, no. 3, pp. 337–340, 1983.
  • [125] S. Ogawa, Y. Iwasawa, T. Toyokuni, and T. Suami, “Synthesis of pseudooligosaccharidic glycosidase inhibitors. Part 1. Synthesis ofadiposin-1 and related compounds,” Carbohydrate Research, vol. 141, pp. 29–40, 1985.
  • [126] S. Ogawa and Y. Shibata, “Total synthesis of acarbose andadiposin-2,” Journal of the Chemical Society, Chemical Communications, no. 9, pp. 605–606, 1988.
  • [127] Y. Shibata and S. Ogawa, “Synthesis of pseudo-oligosaccharide glycosidase inhibitors. Part VII. Total synthesis of acarbose andadiposin-2,” Carbohydrate Research, vol. 189, pp. 309–322, 1989.
  • [128] J. Itoh, S. Omoto, T. Shomura et al., “Oligostatins, new antibiotics with amylase inhibitory activity. I. Production, isolation and characterization,” Journal of Antibiotics, vol. 34, no. 11, pp. 1424–1428, 1981.
  • [129] S. Omoto, J. Itoh, H. Ogino, K. Iwamatsu, N. Nishizawa, and S. Inouye, “Oligostatins, new antibiotics with amylase inhibitory activity. II. Structures of oligostatins C, D and E,” The Journal of Antibiotics, vol. 34, no. 11, pp. 1429–1433, 1981.
  • [130] S. Ogawa, Y. Iwasawa, T. Toyokuni, and T. Suami, “Synthesis of a common structural unit of the antibiotic oligostatins,” Chemistry Letters, vol. 11, no. 11, pp. 1729–1732, 1982.
  • [131] S. Ogawa, Y. Iwasawa, T. Toyokuni, and T. Suami, “Synthesis of a core structure of the antibiotic oligostatin,” Carbohydrate Research, vol. 144, no. 1, pp. 155–162, 1985.
  • [132] Y. Shibata, Y. Kosuge, and S. Ogawa, “Synthesis and biological activities of methyl oligobiosaminide and some deoxy isomers thereof,” Carbohydrate Research, vol. 199, no. 1, pp. 37–54, 1990.
  • [133] K. Watanabe, T. Furumai, M. Sudoh, K. Yokose, and H. B. Maruyama, “New 𝛼-amylase inhibitor, trestatins. IV. Taxonomy of the producing strains and fermentation of trestatin A,” Journal of Antibiotics, vol. 37, no. 5, pp. 479–486, 1984.
  • [134] K. Yokose, K. Ogawa, T. Sano, K. Watanabe, H.-B. Maruyama, and Y. Suhara, “New 𝛼-amylase inhibitor, trestatins. I. Isolation, characterization and biological activities of trestatins A, B and C,” The Journal of Antibiotics, vol. 36, no. 9, pp. 1157–1165, 1983.
  • [135] L. Vertesy, H.-W. Fehlhaber, and A. Schulz, “The trehalase ´ inhibitor salbostatin, a novel metabolite from Streptomyces albus, ATCC 21838,” Angewandte Chemie—International Edition, vol. 33, no. 18, pp. 1844–1846, 1994.
  • [136] T. Yamagishi, Ch. Uchida, and S. Ogawa, “Total synthesis of the trehalase inhibitor salbostatin,” Chemistry: A European Journal, vol. 1, pp. 634–636, 1996.
  • [137] T. Yamagishi, Ch. Uchida, and S. Ogawa, “Total synthesis of trehalase inhibitor salbostatin,” Bioorganic & Medicinal Chemistry Letters, vol. 5, no. 5, pp. 487–490, 1995.
  • [138] N. Kawamura, N. Kinoshita, R. Sawa et al., “Pyralomicins, novel antibiotics from Microtetraspora spiralis. I. Taxonomy and production,” The Journal of Antibiotics, vol. 49, no. 7, pp. 706– 709, 1996.
  • [139] N. Kawamura, R. Sawa, Y. Rakahashi et al., “Pyralomicins, new antibiotics from Actinomadura spiralis,” Journal of Antibiotics, vol. 48, no. 5, pp. 435–437, 1995.
  • [140] N. Kawamura, R. Sawa, Y. Takahashi et al., “Pyralomicins, novel antibiotics from Microtetraspora spiralis. II. Structure determination,” Journal of Antibiotics, vol. 49, no. 7, pp. 651–656, 1996.
  • [141] T. R. Kelly and R. L. Moiseyeva, “Total synthesis of the pyralomicinones,” Journal of Organic Chemistry, vol. 63, no. 9, pp. 3147– 3150, 1998.
  • [142] K. Tatsuta, M. Takahashi, and N. Tanaka, “The first total synthesis of pyralomicin 2c,” Tetrahedron Letters, vol. 40, no. 10, pp. 1929–1932, 1999.
  • [143] K. Tatsuta, M. Takahashi, and N. Tanaka, “The first total synthesis of pyralomicin 1c,” Journal of Antibiotics, vol. 53, no. 1, pp. 88–91, 2000.
  • [144] G. N. Jenkins and N. J. Turner, “The biosynthesis of carbocyclic nucleosides,” Chemical Society Reviews, vol. 24, no. 3, pp. 169– 176, 1995.
  • [145] R. J. Parry, “Investigations of the biosynthesis of aristeromycin,” in Secondary-Metabolite Biosynthesis and Metabolism, vol. 44 of Environmental Science Research, pp. 89–104, Springer, Berlin, Germany, 1992.
  • [146] J. M. Hill, G. N. Jenkins, C. P. Rush et al., “Revised pathway for the biosynthesis of aristeromycin and neplanocin A from D-glucose in Streptomyces citricolor,” Journal of the American Chemical Society, vol. 117, no. 19, pp. 5391–5392, 1995.
  • [147] R. J. Parry and Y. Jiang, “The biosynthesis of aristeromycin. Conversion of neplanocin A to aristeromycin by a novel enzymatic reduction,” Tetrahedron Letters, vol. 35, no. 52, pp. 9665–9668, 1994.
  • [148] A. Gambacorta, A. Gliozzi, and M. De Rosa, “Archaeal lipids and their biotechnological applications,” World Journal of Microbiology and Biotechnology, vol. 11, no. 1, pp. 115–131, 1995.
  • [149] A. Gambacorta, G. Caracciolo, D. Trabasso, I. Izzo, A. Spinella, and G. Sodano, “Biosynthesis of calditol, the cyclopentanoid containing moiety of the membrane lipids of the archaeon Sulfolobus solfataricus,” Tetrahedron Letters, vol. 43, no. 3, pp. 451–453, 2002.
  • [150] N. Yamauchi, H. Ueoka, N. Kamada, and T. Murae, “Resemblance of carbocycle formation from carbohydrates between archaea and eucarya/eubacteria. Biosynthesis of calditol, the characteristic lipid-content molecule in Sulfolobus acidocaldarius,” Bulletin of the Chemical Society of Japan, vol. 77, no. 4, pp. 771–778, 2004.
  • [151] N. Yamauchi, N. Kamada, and H. Ueoka, “The possibility of involvement of ‘cyclase’ enzyme of the calditol carbocycle with broad substrate specificity in Sulfolobus acidcaldarius, a typical thermophilic archaea,” Chemistry Letters, vol. 35, no. 11, pp. 1230–1231, 2006. 34 International Journal of Carbohydrate Chemistry
  • [152] B. Nicolaus, A. Trincone, E. Esposito, M. R. Vaccaro, A. Gambacorta, and M. De Rosa, “Calditol tetraether lipids of the archaebacterium Sulfolobus solfataricus. Biosynthetic studies,” Biochemical Journal, vol. 266, no. 3, pp. 785–791, 1990.
  • [153] D. Voet and J. G. Voet, “Citric acid cycle,” in Biochemistry, chapter 21, John Wiley & Sons, New York, NY, USA, 3rd edition, 2004.
  • [154] J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, W. H. Freeman, San Francisco, Calif, USA, 5th edition, 2002.
  • [155] S. Singh, A. Anand, and P. K. Srivastava, “Regulation and properties of glucose-6-phosphate dehydrogenase: a review,” International Journal of Plant Physiology and Biochemistry, vol. 4, pp. 1–19, 2012.
  • [156] H.W. Hofer and H. P. Bauer, “6-Phosphogluconolactonase,” Cell Biochemistry and Function, vol. 5, no. 2, pp. 97–99, 1987.
  • [157] M. Rippa, S. Hanau, C. Cervellati, and F. Dallocchio, “6- Phosphogluconate dehydrogenase: structural symmetry and functional asymmetry,” Protein and Peptide Letters, vol. 7, no. 5, pp. 341–348, 2000.
  • [158] W. T. Williamson and W. A. Wood, “D-Ribulose-5-phosphate3- epimerase,” Methods in Enzymology, vol. 9, pp. 605–608, 1966.
  • [159] T. Wood, “Assay for D-ribose-5-phosphate ketol isomerase and D-ribulose-5-phosphate 3-epimerase,” Methods in Enzymology, vol. 41, pp. 63–66, 1975.
  • [160] G. A. Kochetov and O. N. Solovjeva, “Structure and functioning mechanism of transketolase,” Biochimica et Biophysica Acta (BBA)—Proteins and Proteomics, vol. 1844, no. 9, pp. 1608–1618, 2014.
  • [161] A. Ranoux and U. Hanefeld, “Improving transketolase,” Topics in Catalysis, vol. 56, no. 9-10, pp. 750–764, 2013.
  • [162] R. Wohlgemuth, M. E. B. Smith, P. A. Dalby, and J. M. Woodley, “Transketolases,” in Encyclopedia of Industrial, M. C. Flickinger, Ed., vol. 7, pp. 4746–4752, John Wiley & Sons, New York, NY, USA, 2010.
  • [163] T. Widlanski, S. L. Bender, and J. R. Knowles, “Dehydroquinate synthase: a sheep in wolf ’s clothing?” Journal of the American Chemical Society, vol. 111, no. 6, pp. 2299–2300, 1989.
  • [164] A. Stratmann, T. Mahmud, S. Lee, J. Distler, H. G. Floss, and W. Piepersberg, “The AcbC protein from actinoplanes species is a C7-cyclitol synthase related to 3-dehydroquinate synthases and is involved in the biosynthesis of the 𝛼-glucosidase inhibitor acarbose,” The Journal of Biological Chemistry, vol. 274, no. 16, pp. 10889–10896, 1999.
  • [165] S. Asamizu, P. Xie, C. J. Brumsted, P. M. Flatt, and T. Mahmud, “Evolutionary divergence of sedoheptulose 7-phosphate cyclases leads to several distinct cyclic products,” Journal of the American Chemical Society, vol. 134, no. 29, pp. 12219–12229, 2012.
  • [166] K. M. Kean, S. J. Codding, S. Asamizu, T. Mahmud, and P. A. Karplus, “Structure of a sedoheptulose 7-phosphate cyclase: ValA from Streptomyces hygroscopicus,” Biochemistry, vol. 53, no. 26, pp. 4250–4260, 2014.
  • [167] E. P. Carpenter, A. R. Hawkins, J. W. Frost, and K. A. Brown, “Structure of dehydroquinate synthase reveals an active site capable of multistep catalysis,” Nature, vol. 394, no. 6690, pp. 299–302, 1998.
  • [168] K. M. Herrmann, “The shikimate pathway: early steps in the biosynthesis of aromatic compounds,” Plant Cell, vol. 7, no. 7, pp. 907–919, 1995.
  • [169] R. Hofs, S. Schoppe, R. Thiericke, and A. Zeeck, “Biosynthesis ¨ of gabosines A, B, and C, carba sugars from Streptomyces cellulosae,” European Journal of Organic Chemistry, vol. 2000, no. 10, pp. 1883–1887, 2000.
  • [170] S. Y. Liu and J. P. N. Rosazza, “Enzymatic conversion of glucose to UDP-4-keto-6-deoxyglucose in Streptomyces spp.,” Applied and Environmental Microbiology, vol. 64, no. 10, pp. 3972–3976, 1998.
  • [171] C. J. Thibodeaux, C. E. Melanc¸on, and H.-W. Liu, “Unusual sugar biosynthesis and natural product glycodiversification,” Nature, vol. 446, no. 7139, pp. 1008–1016, 2007.
  • [172] M. A. Fresneda, R. Alib ´ es, J. Font, P. Bay ´ on, and M. Figueredo, ´ “How a diversity-oriented approach has inspired a new hypothesis for the gabosine biosynthetic pathway. A new synthesis of (+)-gabosine C,” Organic and Biomolecular Chemistry, vol. 11, no. 38, pp. 6562–6568, 2013.
  • [173] R. Alibes, P. Bay ´ on, P. De March, M. Figueredo, J. Font, and ´ G. Marjanet, “Enantioselective synthesis and absolute configuration assignment of gabosine O. synthesis of (+)- and (-)- gabosine N and (+)- and (-)-epigabosines N and O,” Organic Letters, vol. 8, no. 8, pp. 1617–1620, 2006.
  • [174] H. Dong, T. Mahmud, I. Tornus, S. Lee, and H. G. Floss, “Biosynthesis of the validamycins: identification of intermediates in the biosynthesis of validamycin A by Streptomyces hygroscopicus var. limoneus,” Journal of the American Chemical Society, vol. 123, no. 12, pp. 2733–2742, 2001.
  • [175] S.-H. Lee, H. Choe, K. S. Bae, D.-S. Park, A. Nasir, and K. M. Kim, “Complete genome of Streptomyces hygroscopicus subsp. limoneus KCTC 1717 (=KCCM 11405), a soil bacterium producing validamycin and diverse secondary metabolites,” Journal of Biotechnology, vol. 219, pp. 1–2, 2016.
  • [176] S. Lee and E. Egelkrout, “Biosynthetic studies on the 𝛼- glucosidase inhibitor acarbose in Actinoplanes sp.: glutamate is the primary source of the nitrogen in acarbose,” Journal of Antibiotics, vol. 51, no. 2, pp. 225–227, 1998.
  • [177] M. K. Patterson Jr. and G. R. Orr, “Asparagine biosynthesis by the Novikoff Hepatoma. Isolation, purification, property, and mechanism studies of the enzyme system,” The Journal of Biological Chemistry, vol. 243, no. 2, pp. 376–380, 1968.
  • [178] A. R. Tesson, T. S. Soper, M. Ciustea, and N. G. J. Richards, “Revisiting the steady state kinetic mechanism of glutaminedependent asparagine synthetase from Escherichia coli,” Archives of Biochemistry and Biophysics, vol. 413, no. 1, pp. 23–31, 2003.
  • [179] T. Mahmud, S. Lee, and H. G. Floss, “The biosynthesis of acarbose and validamycin,” Chemical Records, vol. 1, no. 4, pp. 300–310, 2001.
  • [180] K. Arakawa, S. G. Bowers, B. Michels, V. Trin, and T. Mahmud, “Biosynthetic studies on the 𝛼-glucosidase inhibitor acarbose: the chemical synthesis of isotopically labeled 2-epi-5-epivaliolone analogs,” Carbohydrate Research, vol. 338, no. 20, pp. 2075–2082, 2003.
  • [181] T. Mahmud, I. Tornus, E. Egelkrout et al., “Biosynthetic studies on the 𝛼-glucosidase inhibitor acarbose in Actinoplanes sp.: 2- epi-5-epi-valiolone is the direct precursor of the valienamine moiety,” Journal of the American Chemical Society, vol. 121, no. 30, pp. 6973–6983, 1999.
  • [182] A. M. Coghill and L. R. Garson, Eds., The ACS Style Guide: Effective Communication of Scientific Diphosphates Information, American Chemical Society, Washington, DC, USA, 3rd edition, 2006.
  • [183] Q. Cui, W. S. Shin, Y. Luo, J. Tian, H. Cui, and D. Yin, “Thymidylate kinase: an old topic brings new perspectives,” International Journal of Carbohydrate Chemistry 35 Current Medicinal Chemistry, vol. 20, no. 10, pp. 1286–1305, 2013.
  • [184] S. Lee, B. Sauerbrei, J. Niggemann, and E. Egelkrout, “Biosynthetic studies on the 𝛼-glucosidase inhibitor acarbose in Actinoplanes sp.: source of the maltose unit,” The Journal of Antibiotics, vol. 50, no. 11, pp. 954–960, 1997.
  • [185] S. G. Bowers, T. Mahmud, and H. G. Floss, “Biosynthetic studies on the 𝛼-glucosidase inhibitor acarbose: the chemical synthesis of dTDP-4-amino-4,6-dideoxy-𝛼-D-glucose,” Carbohydrate Research, vol. 337, no. 4, pp. 297–304, 2002.
  • [186] U. F. Wehmeier and W. Piepersberg, “Enzymology of aminoglycoside biosynthesis-deduction from gene cluster,” in Complex Enzymes in Microbial Natural Products Biosynthesis. Part B.: Polyketides, Aminocoumarins and Carbohydrates, D. A. Howood, Ed., vol. 459 of Methods in Enzymology, chapter 19, p. 479, Elsevier, 2009.
  • [187] H. Lodish, A. Berk, Ch. Kaiser et al., “Genes, genomics and chromosomes,” in Molecular Cell Biology, pp. 227–230, Freeman, 7th edition, 2013.
  • [188] G. Yi, S.-H. Sze, and M. R. Thon, “Identifying clusters of functionally related genes in genomes,” Bioinformatics, vol. 23, no. 9, pp. 1053–1060, 2007.
  • [189] R. Overbeek, M. Fonstein, M. D’Souza, G. D. Push, and N. Maltsev, “The use of gene clusters to infer functional coupling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 6, pp. 2896–2901, 1999.
  • [190] J. Yang, H. Xu, Y. Zhang, L. Bai, Z. Deng, and T. Mahmud, “Nucleotidylation of unsaturated carbasugar in validamycin biosynthesis,” Organic and Biomolecular Chemistry, vol. 9, no. 2, pp. 438–449, 2011.
  • [191] Ch.-S. Zhang, M. Podeschwa, O. Block, H.-J. Altenbach, W. Piepersberg, and U. F. Wehmeier, “Identification of a 1-epivanienol 7-kinase activity in the producer of acarbose, ˜ Actinoplanes sp. SE50/110,” FEBS Letters, vol. 540, no. 1–3, pp. 53–57, 2003.
  • [192] C.-S. Zhang, A. Stratmann, O. Block et al., “Biosynthesis of the C7-cyclitol moiety of acarbose in Actinoplanes species SE50/110. 7-O-phosphorylation of the initial cyclitol precursor leads to proposal of a new biosynthetic pathway,” The Journal of Biological Chemistry, vol. 277, no. 25, pp. 22853–22862, 2002.
  • [193] A. Stratmann, T. Mahmud, S. Lee, J. Distler, H. G. Floss, and W. Piepersberg, “The AcbC protein from Actinoplanes species is a C7-cyclitol synthase related to 3-dehydroquinate synthases and is involved in the biosynthesis of the 𝛼-glucosidase inhibitor acarbose,” Journal of Biological Chemistry, vol. 274, no. 16, pp. 10889–10896, 1999.
  • [194] S. Wendler, V. Ortseifen, M. Persicke et al., “Carbon source dependent biosynthesis of acarviose metabolites in Actinoplanes sp. SE50/110,” Journal of Biotechnology, vol. 191, pp. 113– 120, 2014.
  • [195] D. E. Metzler, Biochemistry. The Chemical Reactions of Living Cells, vol. 1, Elsevier, 2nd edition, 2003.
  • [196] P. M. Flatt, X. Wu, S. Perry, and T. Mahmud, “Genetic insights into pyralomicin biosynthesis in Nonomuraea spiralis IMC A0156,” Journal of Natural Products, vol. 76, no. 5, pp. 939–946, 2013.
  • [197] D. Schwarzer, R. Finking, and M. A. Marahiel, “Nonribosomal peptides: from genes to products,” Natural Product Reports, vol. 20, no. 3, pp. 275–287, 2003.
  • [198] M. A. Marahiel, T. Stachelhaus, and H. D. Mootz, “Modular peptide synthetases involved in nonribosomal peptide synthesis,” Chemical Reviews, vol. 97, no. 7, pp. 2651–2673, 1997.
  • [199] C. Khosla, R. S. Gokhale, J. R. Jacobsen, and D. E. Cane, “Tolerance and specificity of polyketide synthases,” Annual Review of Biochemistry, vol. 68, pp. 219–253, 1999.
  • [200] H. Jenke-Kodama, A. Sandmann, R. Muller, and E. Dittmann, ¨ “Evolutionary implications of bacterial polyketide synthases,” Molecular Biology and Evolution, vol. 22, no. 10, pp. 2027–2039, 2005.
  • [201] H. Lodish, L. Zipursky, P. B. Matsudaira, D. David, and J. Darnel, Molecular Definition of a Gene—Molecular Cell Biology, W. H. Freeman, San Francisco, Calif, USA, 2000.
  • [202] G. J. Williams, “Engineering polyketide synthases and nonribosomal peptide synthetases,” Current Opinion in Structural Biology, vol. 23, no. 4, pp. 603–612, 2003.
  • [203] C. R. Hutchinson, “Polyketide and non-ribosomal peptide synthases: falling together by coming apart,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 6, pp. 3010–3012, 2003.
  • [204] M. E. Horsman, T. P. A. Hari, and Ch. N. Boddy, “Polyketide synthase and non-ribosomal peptide synthetase thioesterase selectivity: logic gate or a victim of fate?” Natural Product Reports, vol. 33, no. 2, pp. 183–202, 2016.
  • [205] D. R. M. Smith, S. Gruschow, and R. J. Goss, “Scope and ¨ potential of halogenases in biosynthetic applications,” Current Opinion in Chemical Biology, vol. 17, no. 2, pp. 276–283, 2013.
  • [206] T. Bureau, K. C. Lam, R. K. Ibrahim, B. Behdad, and S. Dayanandan, “Structure, function, and evolution of plant Omethyltransferases,” Genome, vol. 50, no. 11, pp. 1001–1013, 2007.
  • [207] S. Singh, G. N. Phillips Jr., and J. S. Thorson, “The structural biology of enzymes involved in natural product glycosylation,” Natural Product Reports, vol. 29, no. 10, pp. 1201–1237, 2012.
  • [208] A. Chang, S. Singh, G. N. Phillips, and J. S. Thorson, “Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation,” Current Opinion in Biotechnology, vol. 22, no. 6, pp. 800–808, 2011.
  • [209] H. Nothaft and C. M. Szymanski, “Protein glycosylation in bacteria: sweeter than ever,” Nature Reviews Microbiology, vol. 8, no. 11, pp. 765–778, 2010.
  • [210] D. Calo, L. Kaminski, and J. Eichler, “Protein glycosylation in Archaea: sweet and extreme,” Glycobiology, vol. 20, no. 9, pp. 1065–1076, 2010.
  • [211] W. S. Choi, X. Wu, Y.-H. Choeng et al., “Genetic organization of the putative salbostatin biosynthetic gene cluster including the 2-epi-5-epi-valiolone synthase gene in Streptomyces albusATCC 21838,” Applied Microbiology and Biotechnology, vol. 80, no. 4, pp. 637–645, 2008.
  • [212] G. E. McCasland, S. Furuta, and L. J. Durham, “Alicyclic carbohydrates. XXIX. The synthesis of a pseudo-hexose (2,3,4,5- tetrahydroxycyclohexanemethanol),” Journal of Organic Chemistry, vol. 31, no. 5, pp. 1516–1521, 1966.
  • [213] T. Suami, S. Ogawa, M. Takata et al., “Synthesis of sweet tasting pseudo-𝛽-fructopyranose,” Chemistry Letters, vol. 14, no. 6, pp. 719–722, 1985.
  • [214] T. Suami, S. Ogawa, M. Takata, K. Yasuda, K. Takei, and A. Suga, “Pseudo-sugars. XIV. Synthesis of sweet-tasting pseudo-𝛽-dlfructopyranose,” Bulletin of the Chemical Society of Japan, vol. 59, no. 3, pp. 819–821, 1986.
  • [215] S. Ogawa, Y. Uematsu, and S. Yoshida, “Synthesis and sweetness of pseudo-𝛽-D and L-fructopyranose,” Journal of Carbohydrate Chemistry, vol. 6, no. 3, pp. 471–478, 1987.
  • [216] J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, chapter 8, section 8.5, Freeman, 5th edition, 2002. 36 International Journal of Carbohydrate Chemistry
  • [217] U. Etxeberria, A. L. de la Garza, J. Campion, J. A. Mart ´ ´ınez, and F. I. Milagro, “Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase,” Expert Opinion on Therapeutic Targets, vol. 16, no. 3, pp. 269–297, 2012.
  • [218] R. J. Parry, M. R. Burns, P. N. Skae, J. C. Hoyt, and B. Pal, “Carbocyclic analogues of D-ribose-5-phosphate: synthesis and behavior with 5-phosphoribosyl 𝛼-1-pyrophosphate synthetases,” Bioorganic and Medicinal Chemistry, vol. 4, no. 7, pp. 1077–1088, 1996.
  • [219] J. H. Kim, D. Wolle, K. Haridas, R. J. Parry, J. L. Smith, and H. Zalkin, “A stable carbocyclic analog of 5-phosphoribosyl1-pyrophosphate to probe the mechanism of catalysis and regulation of glutamine phosphoribosylpyrophosphate amidotransferase,” The Journal of Biological Chemistry, vol. 270, no. 29, pp. 17394–17399, 1995.
  • [220] R. J. Parry and K. Haridas, “Synthesis of 1𝛼-Pyrophosphoryl2𝛼,3𝛼-dihydroxy-4𝛽-cyclopentanemethanol-5-phosphate, a Carbocyclic Analog of 5-Phosphoribosyl-1-pyrophosphate (PRPP),” Tetrahedron Letters, vol. 34, no. 44, pp. 7013–7016, 1993.
  • [221] J. A. Duley, J. Christodoulou, and A. P. M. de Brouwer, “The PRPP synthetase spectrum: what does it demonstrate about nucleotide syndromes?” Nucleosides, Nucleotides & Nucleic Acids, vol. 30, no. 12, pp. 1129–1139, 2011.
  • [222] M. Tatibana, K. Kita, M. Taira et al., “Mammalian phosphoribosyl-pyrophosphate synthetase,” Advances in Enzyme Regulation, vol. 35, pp. 229–249, 1995.
  • [223] S. Fujimori, “Genetic bases of gout and hyperuricemia. I. PRPP synthetase superactivity,” in Genetic Errors Associated with Purine and Pyrimidine Metabolism in Humans: Diagnosis and Treatment, Y. Moriwaki and T. Yamamoto, Eds., pp. 6–14, Research Signpost, Thiruvananthapuram, India, 2006.
  • [224] United States Food, Drug Administration, and Guidance for Industry, Drug Interaction Studies-Study Design, Data Analysis, and Implications for Dosing and Labeling, Clinical Pharmacology, 2006.
  • [225] M. A. Becker, P. R. Smith, W. Taylor, R. Mustafi, and R. L. Switzer, “The genetic and functional basis of purine nucleotide feedback-resistant phosphoribosylpyrophosphate synthetase superactivity,” Journal of Clinical Investigation, vol. 96, no. 5, pp. 2133–2141, 1995.
  • [226] S. Mazurek, C. B. Boschek, and E. Eigenbrodt, “The role of phosphometabolites in cell proliferation, energy metabolism, and tumor therapy,” Journal of Bioenergetics and Biomembranes, vol. 29, no. 4, pp. 315–330, 1997.
  • [227] M. Sunamura, M. Oonuma, F. Motoi et al., “Gene therapy for pancreatic cancer targeting the genomic alterations of tumor suppressor genes using replication-selective oncolytic adenovirus,” Human Cell, vol. 15, no. 3, pp. 138–150, 2002.
  • [228] J. R. K. Cairns and A. Esen, “𝛽-Glucosidases,” Cellular and Molecular Life Sciences, vol. 67, no. 20, pp. 3389–3405, 2010.
  • [229] K. Tatsuta, “Total synthesis and chemical design of useful glycosidase inhibitors,” in Carbohydrate Mimics, Y. Chapleur, Ed., pp. 283–305, John Wiley & Sons, New York, NY, USA, 1998.
  • [230] W. W. Kallemeijn, M. D. Witte, T. Wennekes, and J. M. F. G. Aerts, “Mechanism-based inhibitors of glycosidases: design and applications,” Advances in Carbohydrate Chemistry and Biochemistry, vol. 71, pp. 297–338, 2014.
  • [231] S. Atsumi, H. Iinuma, C. Nosaka, and K. Umezawa, “Biological activities of cyclophellitol,”The Journal of Antibiotics, vol. 43, no. 12, pp. 1579–1585, 1990.
  • [232] S. Pengthaisong, C.-F. Chen, S. G. Withers, B. Kuaprasert, and J. R. Ketudat Cairns, “Rice BGlu1 glycosynthase and wild type transglycosylation activities distinguished by cyclophellitol inhibition,” Carbohydrate Research, vol. 352, pp. 51–59, 2012.
  • [233] T. M. Gloster, R. Madsen, and G. J. Davies, “Structural basis for cyclophellitol inhibition of a 𝛽-glucosidase,” Organic & Biomolecular Chemistry, vol. 5, no. 3, pp. 444–446, 2007.
  • [234] M. Nakata, C. Chong, Y. Niwata, K. Toshima, and K. Tatsuta, “A family of cyclophellitol analogs: synthesis and evaluation,” Journal of Antibiotics, vol. 46, no. 12, pp. 1919–1922, 1993.
  • [235] V. W.-F. Tai, P.-H. Fung, Y.-S. Wong, and T. K. M. Shing, “Synthesis and glycosidase-inhibitory activity of cyclophellitol analogues,” Tetrahedron: Asymmetry, vol. 5, no. 7, pp. 1353–1362, 1994.
  • [236] V.W.-F. Tai, P.-H. Fung, Y.-S.Wong, and T. K. M. Shing, “Kinetic studies on cyclophellitol analogues—mechanism-based inactivators,” Biochemical and Biophysical Research Communications, vol. 213, no. 1, pp. 175–180, 1995.
  • [237] K.-Y. Li, J. Jiang, M. D. Witte et al., “Exploring functional cyclophellitol analogues as human retaining beta-glucosidase inhibitors,” Organic & Biomolecular Chemistry, vol. 12, no. 39, pp. 7786–7791, 2014.
  • [238] K. Tatsuta, Y. Niwata, K. Umezawa, K. Toshima, and M. Nakata, “Enantiospecific synthesis and biological evaluation of 1,6-epicyclophellitol,” Journal of Antibiotics, vol. 44, no. 4, pp. 456–458, 1991.
  • [239] S. Atsumi, C. Nosaka, Y. Ochi, H. Iinuma, and K. Umezawa, “Inhibition of experimental metastasis by an 𝛼-glucosidase inhibitor, 1,6-epi-cyclophellitol,” Cancer Research, vol. 53, no. 20, pp. 4896–4899, 1993.
  • [240] W. W. Kallemeijn, K.-Y. Li, M. D. Witte et al., “Novel activitybased probes for broad-spectrum profiling of retaining 𝛽- exoglucosidases in situ and in vivo,” Angewandte Chemie— International Edition, vol. 51, no. 50, pp. 12529–12533, 2012.
  • [241] K.-Y. Li, J. Jiang, M. D. Witte et al., “Synthesis of cyclophellitol, cyclophellitol aziridine, and their tagged derivatives,” European Journal of Organic Chemistry, vol. 2014, no. 27, pp. 6030–6043, 2014.
  • [242] L. I. Willems, T. J. M. Beenakker, B. Murray et al., “Synthesis of 𝛼- and 𝛽-galactopyranose-configured isomers of cyclophellitol and cyclophellitol aziridine,” European Journal of Organic Chemistry, vol. 2014, no. 27, pp. 6044–6056, 2014.
  • [243] J. Jiang, T. J. M. Beenakker, W. W. Kallemeijn et al., “Comparing cyclophellitol N-alkyl and N-acyl cyclophellitol aziridines as activity-based glycosidase probes,” Chemistry, vol. 21, no. 30, pp. 10861–10869, 2015.
  • [244] T. Suami and S. Ogawa, “Chemistry of carba-sugars (pseudosugars) and their derivatives,” Advances in Carbohydrate Chemistry and Biochemistry, vol. 48, pp. 21–90, 1990.
  • [245] K. Kamata, M. Mitsuya, T. Nishimura, J.-I. Eiki, and Y. Nagata, “Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase,” Structure, vol. 12, no. 3, pp. 429–438, 2004.
  • [246] C. Postic, M. Shiota, and M. A. Magnuson, “Cell-specific roles of glucokinase in glucose homeostasis,” Recent Progress in Hormone Research, vol. 56, pp. 195–217, 2001.
  • [247] I. Miwa, H. Hara, J. Okuda, T. Suami, and S. Ogawa, “Inhibition of glucose-stimulated insulin release by pseudo-𝛼- DL-glucose as a glucokinase inhibitor,” Biochemistry International, vol. 11, no. 6, pp. 809–816, 1985. International Journal of Carbohydrate Chemistry 37
  • [248] M. Kitaoka, S. Ogawa, and H. Taniguchi, “A cellobiose phosphorylase from Cellvibrio gilvus recognizes only the 𝛽-d-form of 5a-carba-glucopyranose,” Carbohydrate Research, vol. 247, pp. 355–359, 1993.
  • [249] Y. Sugimoto, H. Suzuki, H. Yamaki, T. Nishimura, and N. Tanaka, “Mechanism of action of 2-crotonyloxymethyl-4,5,6- trihydroxycyclohex-2-enone, a SH inhibitory antitumor antibiotic, and its effect on drug-resistant neoplastic cells,” Journal of Antibiotics, vol. 35, no. 9, pp. 1222–1230, 1982.
  • [250] C. F. M. Huntley, D. S. Hamilton, D. J. Creighton, and B. Ganem, “Reaction of COTC with glutathione: structure of the putative glyoxalase I inhibitor,” Organic Letters, vol. 2, no. 20, pp. 3143– 3144, 2000.
  • [251] D. Kamiya, Y. Uchihata, E. Ichikawa, K. Kato, and K. Umezawa, “Reversal of anticancer drug resistance by COTC based on intracellular glutathione and glyoxalase I,” Bioorganic and Medicinal Chemistry Letters, vol. 15, no. 4, pp. 1111–1114, 2005.
  • [252] F. Collu, L. Bonsignore, M. Casu, C. Floris, J. Gertsch, and F. Cottiglia, “New cytotoxic saturated and unsaturated cyclohexanones from Anthemis maritima,” Bioorganic and Medicinal Chemistry Letters, vol. 18, no. 5, pp. 1559–1562, 2008.
  • [253] E. Joseph, J. L. Eiseman, D. S. Hamilton et al., “Molecular basis of the antitumor activities of 2-crotonyloxymethyl-2- cycloalkenones,” Journal of Medicinal Chemistry, vol. 46, no. 1, pp. 194–196, 2003.
  • [254] P. J. Thornalley, “Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation,” Biochemical Society Transactions, vol. 31, no. 6, pp. 1343–1348, 2003.
  • [255] D. J. Creighton and D. S. Hamilton, “Brief history of glyoxalase I and what we have learned about metal ion-dependent, enzyme-catalyzed isomerizations,” Archives of Biochemistry and Biophysics, vol. 387, no. 1, pp. 1–10, 2001.
  • [256] S. Mirza, L.-P. Molleyres, and A. Vasella, “Synthesis of a glyoxalase I inhibitor from Streptomyces griseosporeus Niida et Ogasawara,” Helvetica Chimica Acta, vol. 68, no. 4, pp. 988–996, 1985.
  • [257] H. Takayama, K. Hayashi, and T. Koizumi, “Enantioselective total synthesis of Glyoxalase I inhibitor using asymmetric Diels-Alder reaction of a new chiral dienophile, (S)S-3-(3- triflouromethylpyrid-2-ylsulfinyl)acrylate,” Tetrahedron Letters, vol. 27, no. 45, pp. 5509–5512, 1986.
  • [258] T. K. M. Shing and Y. Tang, “Enantiospecific synthesis of 2-crotonyloxy-(4R,5R,6R)-4,5,6-trihydroxycyclohex-2-enone (COTC) from quinic acid,” Journal of the Chemical Society, Chemical Communications, no. 4, p. 312, 1990.
  • [259] C. F. M. Huntley, H. B. Wood, and B. Ganem, “A new synthesis of the glyoxalase-I inhibitor COTC,” Tetrahedron Letters, vol. 41, no. 13, pp. 2031–2034, 2000.
  • [260] C. L. Arthurs, N. S. Wind, R. C. Whitehead, and I. J. Stratford, “Analogues of 2-crotonyloxymethyl-(4R,5R,6R)-4,5,6- trihydroxycyclohex-2-enone (COTC) with anti-tumor properties,” Bioorganic and Medicinal Chemistry Letters, vol. 17, no. 2, pp. 553–557, 2007.
  • [261] C. L. Arthurs, J. Raftery, H. L. Whitby, R. C. Whitehead, N. S. Wind, and I. J. Stratford, “Arene cis-dihydrodiols: useful precursors for the preparation of analogues of the anti-tumour agent, 2-crotonyloxymethyl-(4R,5R,6R)-4,5,6-trihydroxycyclohex-2-enone (COTC),” Bioorganic and Medicinal Chemistry Letters, vol. 17, no. 21, pp. 5974–5977, 2007.
  • [262] C. L. Arthurs, G. A. Morris, M. Piacenti et al., “The synthesis of 2-oxyalkyl-cyclohex-2-enones, related to the bioactive natural products COTC and antheminone A, which possess antitumour properties,” Tetrahedron, vol. 66, no. 46, pp. 9049–9060, 2010.
  • [263] T. K. M. Shing, H. T. Wu, H. F. Kwok, and C. B. S. Lau, “Synthesis of chiral hydroxylated enones as potential anti-tumor agents,” Bioorganic and Medicinal Chemistry Letters, vol. 22, no. 24, pp. 7562–7565, 2012.
  • [264] C. L. Arthurs, K. F. Lingley, M. Piacenti et al., “(-)-Quinic acid: a versatile precursor for the synthesis of analogues of 2-crotonyloxymethyl-(4R,5R,6R)-4,5,6-trihydroxycyclohex2-enone (COTC) which possess anti-tumour properties,” Tetrahedron Letters, vol. 49, no. 15, pp. 2410–2413, 2008.
  • [265] P. M. Dowling, “Aminoglycosides and aminocyclitols,” in Antimicrobial Therapy in Veterinary Medicine, S. Giguere, J. F. ` Prescott, and P. M. Dowling, Eds., chapter 14, pp. 233–255, John Wiley & Sons, Hoboken, NJ, USA, 5th edition, 2013.
  • [266] F. Kudo and T. Eguchi, “Aminoglycoside antibiotics: new insights into the biosynthetic machinery of old drugs,” The Chemical Record, vol. 16, no. 1, pp. 4–18, 2016.
  • [267] N. M. Llewellyn and J. B. Spencer, “Biosynthesis of 2- deoxystreptamine-containing aminoglycoside antibiotics,” Natural Product Reports, vol. 23, no. 6, pp. 864–874, 2006.
  • [268] E. Nango, T. Eguchi, and K. Kakinuma, “Active site mapping of 2-deoxy-scyllo-inosose synthase, the key starter enzyme for the biosynthesis of 2-deoxystreptamine. Mechanism-based inhibition and identification of lysine-141 as the entrapped nucleophile,” Journal of Organic Chemistry, vol. 69, no. 3, pp. 593–600, 2004.
  • [269] D. Dykes and W. Waud, “Murine L1210 and P388 leukemias,” in Tumor Models in Cancer Research, B. Teicher, Ed., pp. 23–40, Humana Press, 2002.
  • [270] A. Numata, M. Iritani, T. Yamada et al., “Novel antitumour metabolites produced by a fungal strain from a sea hare,” Tetrahedron Letters, vol. 38, no. 47, pp. 8215–8218, 1997.
  • [271] R. S. Herbst, “Review of epidermal growth factor receptor biology,” International Journal of Radiation Oncology Biology Physics, vol. 59, no. 2, pp. 21–26, 2004.
  • [272] J. J. Chanpoux, “DNA topoisomerases: structure, function, and mechanism,” Annual Review of Biochemistry, vol. 70, pp. 369– 413, 2001.
  • [273] G. Bach, S. Breiding-Mack, S. Grabley et al., “Secondary metabolites by chemical screening. 22. Gabosines, new carbasugars from Streptomyces,” Liebigs Annalen der Chemie, pp. 241– 250, 1993.
  • [274] N. B. Javitt, “Hep G2 cells as a resource for metabolic studies: lipoprotein, cholesterol, and bile acids,” The FASEB Journal, vol. 4, no. 2, pp. 161–168, 1990.
  • [275] Y.-Q. Tang, C. Maul, R. Hofs et al., “Gabosines L, N and O: new ¨ carba-sugars from streptomyces with DNA-binding properties,” European Journal of Organic Chemistry, no. 1, pp. 149–153, 2000.
  • [276] A. Maier, C. Maul, M. Zerlin, S. Grabley, and R. Thiericke, “Biomolecular-chemical screening. A novel screening approach for the discovery of biologically active secondary metabolites. II. Application studies with pure metabolites,” The Journal of Antibiotics, vol. 52, no. 11, pp. 952–959, 1999.
  • [277] K. Tatsuta, T. Tsuchiya, N. Mikami, S. Umezawa, H. Umezawa, and H. Naganawa, “KD16 U1, a new metabolite of Streptomyces. Isolation and structural studies,” Journal of Antibiotics, vol. 27, no. 8, pp. 579–586, 1974.
  • [278] B. Winchester, “Role of 𝛼-D-mannosidases in the biosynthesis and catabolism of glycoproteins,” Biochemical Society Transactions, vol. 12, no. 3, pp. 522–524, 1984. 38 International Journal of Carbohydrate Chemistry
  • [279] A. Vidyasagar and K. M. Sureshan, “Total synthesis and glycosidase inhibition studies of (-)-gabosine J and its derivatives,” European Journal of Organic Chemistry, vol. 2014, no. 11, pp. 2349–2356, 2014.
  • [280] O. F. Smetanina, A. I. Kalinovskii, Y. V. Khudyakov et al., “Metabolites of the marine fungus Asperigillus varians KMM 4630,” Chemistry of Natural Compounds, vol. 41, no. 2, pp. 243– 244, 2005.
  • [281] K. Trisuwan, V. Rukachaisirikul, Y. Sukpondma et al., “Epoxydons and a pyrone from the marine-derived fungus Nigrospora sp. PSU-F5,” Journal of Natural Products, vol. 71, no. 8, pp. 1323– 1326, 2008.
  • [282] S. Qin, H. Hussain, B. Schulz, S. Draeger, and K. Krohn, “Two new metabolites, epoxydine A and B, from Phoma sp.,” Helvetica Chimica Acta, vol. 93, no. 1, pp. 169–174, 2010.
  • [283] H. Kakeya, Y. Miyake, M. Shoji et al., “Novel non-peptide inhibitors targeting death receptor-mediated apoptosis,” Bioorganic & Medicinal Chemistry Letters, vol. 13, no. 21, pp. 3743– 3746, 2003.
  • [284] T. Mitsui, Y. Miyake, H. Kakeya, Y. Hayashi, H. Osada, and T. Kataoka, “RKTS-33, an epoxycyclohexenone derivative that specifically inhibits Fas ligand-dependent apoptosis in CTLmediated cytotoxicity,” Bioscience, Biotechnology and Biochemistry, vol. 69, no. 10, pp. 1923–1928, 2005.
  • [285] T. D. Gilmore, “Introduction to NF-𝜅B: players, pathways, perspectives,” Oncogene, vol. 25, no. 51, pp. 6680–6684, 2006.
  • [286] A. R. Brasier, “The NF-𝜅B regulatory network,” Cardiovascular Toxicology, vol. 6, no. 2, pp. 111–130, 2006.
  • [287] T. Saitoh, E. Suzuki, A. Takasugi et al., “Efficient synthesis of (±)-parasitenone, a novel inhibitor of NF-𝜅B,” Bioorganic & Medicinal Chemistry Letters, vol. 19, no. 18, pp. 5383–5386, 2009.
  • [288] C.-H. Wang, H. T. Wu, H. M. Cheng et al., “Inhibition of glutathione S-Transferase M1 by new gabosine analogues is essential for overcoming cisplatin resistance in lung cancer cells,” Journal of Medicinal Chemistry, vol. 54, no. 24, pp. 8574– 8581, 2011.
  • [289] D. J. Giard, S. A. Aaronson, G. J. Todaro et al., “In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors,” Journal of the National Cancer Institute, vol. 51, no. 5, pp. 1417–1423, 1973.
  • [290] L. S. Engel, E. Taioli, R. Pfeiffer et al., “Pooled analysis and metaanalysis of glutathione S-transferase M1 and bladder cancer: a HuGE review,” American Journal of Epidemiology, vol. 156, no. 2, pp. 95–109, 2002.
  • [291] S. Ogawa, H. Aoyama, and T. Sato, “Synthesis of an ether-linked alkyl 5a-carba-𝛽-D-glucoside, a 5a-carba-𝛽-D-galactoside, a 2- acetamido-2-deoxy-5a-carba-𝛽-D-glucoside, and an alkyl 5a󸀠- carba-𝛽-lactoside,” Carbohydrate Research, vol. 337, no. 21–23, pp. 1979–1992, 2002.
  • [292] J. C. Becker, R. Houben, D. Schrama, H. Voigt, S. Ugurel, and R. A. Reisfeld, “Mouse models for melanoma: a personal perspective,” Experimental Dermatology, vol. 19, no. 2, pp. 157– 164, 2010.
  • [293] L. N. David and M. C. Michael, Lipids. Lehninger Principles of Biochemistry, W H Freeman, 4th edition, 2005.
  • [294] I. Mocchetti, “Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophins,” Cellular and Molecular Life Sciences, vol. 62, no. 19-20, pp. 2283–2294, 2005.
  • [295] V. Jeanneret, P. Vogel, P. Renaut, J. Millet, J. Theveniaux, and V. Barberousse, “Carbaxylosides of 4-ethyl-2-oxo-2H-benzopyran-7-yl as non-hydrolyzable, orally active venous antithrombotic agents,” Bioorganic and Medicinal Chemistry Letters, vol. 8, no. 13, pp. 1687–1688, 1998.
  • [296] M. Lefoix, A. Tatibouet, S. Cottaz, H. Driguez, and P. Rollin, ¨ “Carba-glucotropaeolin: the first non-hydrolyzable glucosinolate analogue, to inhibit myrosinase,” Tetrahedron Letters, vol. 43, no. 16, pp. 2889–2890, 2002.
  • [297] B. A. Halkier and J. Gershenzon, “Biology and biochemistry of glucosinolates,” Annual Review of Plant Biology, vol. 57, pp. 303– 333, 2006.
  • [298] H. Yuasa, M. M. Palcic, and O. Hindsgaul, “Synthesis of the carbocyclic analog of uridine 5󸀠-(𝛼-D-galactopyranosyl diphosphate) (UDP-gal) as an inhibitor of 𝛽(1→4)-galactosyltransferase,” Canadian Journal of Chemistry, vol. 73, no. 12, pp. 2190–2195, 1995.
  • [299] S. Cai, M. R. Stroud, S. Hakomori, and T. Toyokuni, “Synthesis of carbocyclic analogs of guanosine 5󸀠 -(𝛽-l-fucopyranosyl diphosphate) (GDP-fucose) as potential inhibitors of fucosyltransferases,” The Journal of Organic Chemistry, vol. 57, no. 25, pp. 6693–6696, 1992.
  • [300] A. J. Norris, J. P. Whitelegge, M. J. Strouse, K. F. Faull, and T. Toyokuni, “Inhibition kinetics of carba- and C-fucosyl analogues of GDP-fucose against fucosyltransferase V: implication for the reaction mechanism,” Bioorganic and Medicinal Chemistry Letters, vol. 14, no. 3, pp. 571–573, 2004.
  • [301] L. D´ıaz and A. Delgado, “Medicinal chemistry of aminocyclitols,” Current Medicinal Chemistry, vol. 17, no. 22, pp. 2393–2418, 2010.
  • [302] S. Ogawa and M. Kanto, “Design and synthesis of 5acarbaglycopyranosylamime glycosidase inhibitors,” Current Topics in Medicinal Chemistry, vol. 9, no. 1, pp. 58–75, 2009.
  • [303] X. Chen, Y. Fan, Y. Zheng, and Y. Shen, “Properties and production of valienamine and its related analogues,” Chemical Reviews, vol. 103, no. 5, pp. 1955–1977, 2003.
  • [304] J.-F. Zhang, Y.-G. Zheng, and Y.-C. Shen, “Inhibitory effect of valienamine on the enzymatic activity of honeybee (Apis cerana Fabr.) 𝛼-glucosidase,” Pesticide Biochemistry and Physiology, vol. 87, no. 1, pp. 73–77, 2007.
  • [305] Y.-G. Zheng, X.-P. Shentu, and Y.-C. Shen, “Inhibition of porcine small intestinal sucrase by valienamine,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 20, no. 1, pp. 49–53, 2005.
  • [306] Y.-P. Xue, L.-Q. Jin, Z.-Q. Liu, J.-F. Zhang, and Y.-G. Zheng, “Purification and characterization of 𝛽-glucosidase from Reticulitermes flaviceps and its inhibition by valienamine and validamine,” African Journal of Biotechnology, vol. 7, no. 24, pp. 4595–4601, 2008.
  • [307] Y. Zheng, X. Shentu, and Y. Shen, “Inhibition of porcine small intestinal sucrase by validamine,” Chinese Journal of Chemical Engineering, vol. 13, no. 3, pp. 429–432, 2005.
  • [308] S. Ogawa, M. Oya, T. Toyokuni, N. Chida, and T. Suami, “Pseudo-sugars. VIII. Synthesis of DL-1-epivalidamine and related compounds,” Bulletin of the Chemical Society of Japan, vol. 56, no. 5, pp. 1441–1445, 1983.
  • [309] S. Ogawa, M. Suzuki, and T. Tonegawa, “New synthesis of Penta-N,O-acetyl-dl-validamine and pseudo-2-amino-2- deoxy-𝛼-dl-mannopyranose, and their uronate analogs,” Bulletin of the Chemical Society of Japan, vol. 61, no. 5, pp. 1824– 1826, 1988. International Journal of Carbohydrate Chemistry 39
  • [310] Y. Kameda, K. Kawashima, M. Takeuchi, K. Ikeda, N. Asano, and K. Matsui, “Preparation and biological activity of mannoand galacto-validamines, new 5a-carba-glycosylamines as 𝛼- glycosidase inhibitors,” Carbohydrate Research, vol. 300, no. 3, pp. 259–264, 1997.
  • [311] Y. Kameda, N. Asano, M. Yoshikawa et al., “Valiolamine, a new 𝛼-glucosidase inhibiting aminocyclitol. produced by Streptomyces hygroscopicus,” Journal of Antibiotics, vol. 37, no. 11, pp. 1301–1307, 1984.
  • [312] S. Horii, H. Fukase, T. Matsuo, Y. Kameda, N. Asano, and K. Matsui, “Synthesis and 𝛼-d-glucosidase inhibitory activity of Nsubstituted valiolamine derivatives as potential oral antidiabetic agents,” Journal of Medicinal Chemistry, vol. 29, no. 6, pp. 1038– 1046, 1986.
  • [313] X. Chen, Y. Zheng, and Y. Shen, “Voglibose (Basen, AO-128), one of the most important 𝛼-glucosidase inhibitors,” Current Medicinal Chemistry, vol. 13, no. 1, pp. 109–116, 2006.
  • [314] A. S. Dabhi, N. R. Bhatt, and M. J. Shah, “Voglibose: an alpha glucosidase inhibitor,” Journal of Clinical and Diagnostic Research, vol. 7, no. 12, pp. 3023–3027, 2013.
  • [315] H. Konya, T. Katsuno, T. Tsunoda et al., “Effects of combination therapy with mitiglinide and voglibose on postprandial plasma glucose in patients with type 2 diabetes mellitus,” Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, vol. 6, pp. 317–325, 2013.
  • [316] V. L. Campo, V. Aragao-Leoneti, and I. Carvalho, “Glycosidases ˜ and diabetes: metabolic changes, mode of action and therapeutic perspectives,” Carbohydrate Chemistry, vol. 39, pp. 181–203, 2013.
  • [317] G. Derosa and P. Maffioli, “𝛼-Glucosidase inhibitors and their use in clinical practice,” Archives of Medical Science, vol. 8, no. 5, pp. 899–906, 2012.
  • [318] B.-H. Bin, J. Seo, S. H. Yang et al., “Novel inhibitory effect of the antidiabetic drug voglibose on melanogenesis,” Experimental Dermatology, vol. 22, no. 8, pp. 541–546, 2013.
  • [319] O. Lockhoff, “Glycolipids as immunomodulators: syntheses and properties,” Angewandte Chemie—International Edition in English, vol. 30, no. 12, pp. 1611–1620, 1991.
  • [320] H. Tsunoda, S.-I. Sasaki, T. Furuya, and S. Ogawa, “Pseudosugars, 36: synthesis of methyl 5󸀠 -carbamaltoses linked by imino, ether and sulfide bridges and unsaturated derivatives thereof,” Liebigs Annales, no. 2, pp. 159–165, 1996.
  • [321] C. Ramstadius, O. Hekmat, L. Eriksson, H. Stalbrand, and I. ˚ Cumpstey, “𝛽-Mannosidase and 𝛽-hexosaminidase inhibitors: synthesis of 1,2-bis-epi-valienamine and 1-epi-2-acetamido-2- deoxy-valienamine from d-mannose,” Tetrahedron Asymmetry, vol. 20, no. 6–8, pp. 795–807, 2009.
  • [322] A. Scaffidi, K. A. Stubbs, R. J. Dennis et al., “A 1-acetamido derivative of 6-epi-valienamine: an inhibitor of a diverse group of 𝛽-N-acetylglucosaminidases,” Organic and Biomolecular Chemistry, vol. 5, no. 18, pp. 3013–3019, 2007.
  • [323] Y. Z. Frohwein and S. Gatt, “Isolation of 𝛽-N-acetylhexosaminidase, 𝛽-N-acetylglucosaminidase, and 𝛽-N-acetylgalactosaminidase from calf brain,” Biochemistry, vol. 6, no. 9, pp. 2775– 2782, 1967.
  • [324] S. C. Li and Y. T. Li, “Studies on the glycosidases of jack bean meal. 3. Crystallization and properties of beta-N-acetylhexosaminidase,” The Journal of Biological Chemistry, vol. 245, no. 19, pp. 5153–5160, 1970.
  • [325] T. Liu, L. Chen, Q. Ma, X. Shen, and Q. Yang, “Structural insights into chitinolytic enzymes and inhibition mechanisms of selective inhibitors,” Current Pharmaceutical Design, vol. 20, no. 5, pp. 754–770, 2014.
  • [326] H. Tsunoda and S. Ogawa, “Pseudosugars, 33. Synthesis of some 5a-carbaglycosylamides, glycolipid analogs of biological interests,” Liebigs Annalen der Chemie, no. 2, pp. 103–107, 1994.
  • [327] H. Tsunoda, J.-I. Inokuchi, K. Yamagishi, and S. Ogawa, “Pseudosugars, 35. Synthesis of glycosylceramide analogs composed of imino-linked unsaturated 5a-carbaglycosyl residues: potent and specific gluco- and galactocerebrosidase inhibitors,” Liebigs Annalen, no. 2, pp. 279–284, 1995.
  • [328] S. Ogawa, M. Ashiuraa, C. Uchida et al., “Synthesis of potent 𝛽-D-glucocerebrosidase inhibitors: N-alkyl-𝛽-valienamines,” Bioorganic and Medicinal Chemistry Letters, vol. 6, no. 8, pp. 929–932, 1996.
  • [329] S. Ogawa, T. Mito, E. Taiji, M. Jimbo, K. Yamagishi, and J.- I. Inokuchi, “Synthesis and biological evaluation of four stereoisomers of PDMP-analogue, N-(2-decylamino-3-hydroxy3-phenylprop- 1-yl)-𝛽-valienamine, and related compounds,” Bioorganic and Medicinal Chemistry Letters, vol. 7, no. 14, pp. 1915–1920, 1997.
  • [330] S. Ogawa, Y. Kobayashi, K. Kabayama, M. Jimbo, and J.- I. Inokuchi, “Chemical modification of 𝛽-glucocerebrosidase inhibitor N-octyl-𝛽-valienamine: synthesis and biological evaluation of N-alkanoyl and N-alkyl derivatives,” Bioorganic and Medicinal Chemistry, vol. 6, no. 10, pp. 1955–1962, 1998.
  • [331] S. Horii, H. Fukase, T. Matsuo, Y. Kameda, N. Asano, and K. Matsui, “Synthesis and 𝛼-D-glucosidase inhibitory activity of N-substituted valiolamine derivatives as potential oral antidiabetic agents,” Journal of Medicinal Chemistry, vol. 29, no. 6, pp. 1038–1046, 1986.
  • [332] Y. Kameda, N. Asano, M. Yoshikawa, K. Matsui, S. Horii, and H. Fukase, “N-substituted valienamines, 𝛼-glucosidase inhibitors,” Journal of Antibiotics, vol. 35, no. 11, pp. 1624–1626, 1982.
  • [333] R. Łysek, C. Schutz, S. Favre et al., “Search for &-glucosidase ¨ inhibitors: new N-substituted valienamine and conduramine F1 derivatives,” Bioorganic and Medicinal Chemistry, vol. 14, no. 18, pp. 6255–6282, 2006.
  • [334] P. Kapferer, V. Birault, J.-F. Poisson, and A. Vasella, “Synthesis and evaluation as glycosidase inhibitors of carbasugarderived spirodiaziridines, spirodiazirines, and spiroaziridines,” Helvetica Chimica Acta, vol. 86, no. 6, pp. 2210–2227, 2003.
  • [335] Y. Wang and A. J. Bennet, “A potent bicyclic inhibitor of a family 27 𝛼-galactosidase,” Organic and Biomolecular Chemistry, vol. 5, no. 11, pp. 1731–1738, 2007.
  • [336] Y. Suzuki, S. Ogawa, and Y. Sakakibara, “Chaperone therapy for neuronopathic lysosomal diseases: competitive inhibitors as chemical chaperones for enhancement of mutant enzyme activities,” Perspectives in Medicinal Chemistry, vol. 2009, no. 3, pp. 7–19, 2009.
  • [337] Y. Suzuki, “Chemical chaperone therapy for GM1-gangliosidosis,” Cellular and Molecular Life Sciences, vol. 65, no. 3, pp. 351– 353, 2008.
  • [338] Y. Suzuki, “𝛽-Galactosidase deficiency: an approach to chaperone therapy,” Journal of Inherited Metabolic Disease, vol. 29, no. 2-3, pp. 471–476, 2006.
  • [339] J. Matsuda, O. Suzuki, A. Oshima et al., “Chemical chaperone therapy for brain pathology in G M1-gangliosidosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 15912–15917, 2003.
  • [340] H. Lin, Y. Sugimoto, Y. Ohsaki et al., “N-Octyl-𝛽-valienamine up-regulates activity of F213I mutant 𝛽-glucosidase in cultured 40 International Journal of Carbohydrate Chemistry cells: a potential chemical chaperone therapy for Gaucher disease,” Biochimica et Biophysica Acta—Molecular Basis of Disease, vol. 1689, no. 3, pp. 219–228, 2004.
  • [341] M. A. Hossain, K. Higaki, S. Saito et al., “Chaperone therapy for Krabbe disease: potential for late-onset GALC mutations,” Journal of Human Genetics, vol. 60, no. 9, pp. 539–545, 2015.
  • [342] S. Kuno, K. Higaki, A. Takahashi, E. Nanba, and S. Ogawa, “Potent chemical chaperone compounds for G𝑀1-gangliosidosis: N-substituted (+)-conduramine F-4 derivatives,” MedChemComm, vol. 6, no. 2, pp. 306–310, 2015.
  • [343] Y. Suzuki, S. Ichinomiya, M. Kurosawa et al., “Therapeutic chaperone effect of N-Octyl 4-Epi-𝛽-valienamine on murine GM1-gangliosidosis,” Molecular Genetics and Metabolism, vol. 106, no. 1, pp. 92–98, 2012.
  • [344] S. Kuno, A. Takahashi, and S. Ogawa, “Transformation of quercitols into 4-methylenecyclohex-5-ene-1,2,3-triol derivatives, precursors for the chemical chaperones N-octyl-4-epi- 𝛽- valienamine (NOEV) and N-octyl-𝛽-valienamine (NOV),” Bioorganic and Medicinal Chemistry Letters, vol. 21, no. 23, pp. 7189–7192, 2011.
  • [345] Z. Luan, L. Li, H. Ninomiya et al., “The pharmacological chaperone effect of N-octyl-𝛽-valienamine on human mutant acid 𝛽-glucosidases,” Blood Cells, Molecules, and Diseases, vol. 44, no. 1, pp. 48–54, 2010.
  • [346] Y. Suzuki, S. Ichinomiya, M. Kurosawa et al., “Chaperone therapy for neuronopathic lysosomal diseases: competitive inhibitors as chemical chaperones for enhancement of mutant enzyme activities,” Perspectives in Medicinal Chemistry, vol. 3, pp. 7–19, 2009.
  • [347] K. Lei, H. Ninomiya, M. Suzuki et al., “Enzyme enhancement activity of N-octyl-𝛽-valienamine on 𝛽-glucosidase mutants associated with Gaucher disease,” Biochimica et Biophysica Acta—Molecular Basis of Disease, vol. 1772, no. 5, pp. 587–596, 2007.
  • [348] M. A. Hossain, K. Higaki, M. Shinpo et al., “Chemical chaperone treatment for galactosialidosis: effect of NOEV on 𝛽- galactosidase activities in fibroblasts,” Brain and Development, vol. 38, no. 2, pp. 175–180, 2016.
  • [349] H. Suzuki, U. Ohto, K. Higaki et al., “Structural basis of pharmacological chaperoning for human 𝛽-galactosidase,” The Journal of Biological Chemistry, vol. 289, no. 21, pp. 14560–14568, 2014.
  • [350] A. Takamura, K. Higaki, H. Ninomiya et al., “Lysosomal accumulation of Trk protein in brain of GM1—gangliosidosis mouse and its restoration by chemical chaperone,” Journal of Neurochemistry, vol. 118, no. 3, pp. 399–406, 2011.
  • [351] Z. Luan, H. Ninomiya, K. Ohno et al., “The effect of N-octyl- 𝛽-valienamine on 𝛽-glucosidase activity in tissues of normal mice,” Brain and Development, vol. 32, no. 10, pp. 805–809, 2010.
  • [352] G. Parenti, G. Andria, and K. J. Valenzano, “Pharmacological chaperone therapy: preclinical development, clinical translation, and prospects for the treatment of lysosomal storage disorders,” Molecular Therapy, vol. 23, no. 7, pp. 1138–1148, 2015.
  • [353] G. Parenti, M. Moracci, S. Fecarotta, and G. Andria, “Pharmacological chaperone therapy for lysosomal storage diseases,” Future Medicinal Chemistry, vol. 6, no. 9, pp. 1031–1045, 2014.
  • [354] B. Winchester, A. Vellodi, and E. Young, “The molecular basis of lysosomal storage diseases and their treatment,” Biochemical Society Transactions, vol. 28, no. 2, pp. 150–154, 2000.
  • [355] S. Ogawa, R. Sekura, A. Maruyama, H. Yuasa, and H. Hashimoto, “Synthesis and glycosidase inhibitory activity of 5acarba-𝛼-dl-fucopyranosylamine and -galactopyranosylamine,” European Journal of Organic Chemistry, vol. 2000, no. 11, pp. 2089–2093, 2000.
  • [356] S. Ogawa, A. Maruyama, T. Odagiri, H. Yuasa, and H. Hashimoto, “Synthesis and biological evaluation of 𝛼-Lfucosidase inhibitors: 5a-carba-𝛼-L-fucopyranosylamine and related compounds,” European Journal of Organic Chemistry, no. 5, pp. 967–974, 2001.
  • [357] S. Ogawa, M. Watanabe, A. Maruyama, and S. Hisamatsu, “Synthesis of an 𝛼-fucosidase inhibitor, 5a-carba-𝛽-L-fucopyranosylamine, and fucose-type 𝛼- and 𝛽-DL-valienamine unsaturated derivatives,” Bioorganic and Medicinal Chemistry Letters, vol. 12, no. 5, pp. 749–752, 2002.
  • [358] R. J. Bernacki, M. J. Niedbala, and W. Korytnyk, “Glycosidases in cancer and invasion,” Cancer and Metastasis Review, vol. 4, no. 1, pp. 81–101, 1985.
  • [359] S. Ogawa, M. Mori, G. Takeuchi, F. Doi, M. Watanabe, and Y. Sakata, “Convenient synthesis and evaluation of enzyme inhibitory activity of several N-alkyl-, N-phenylalkyl, and cyclic isourea derivatives of 5a-Carba-𝛼-DL-fucopyranosylamine,” Bioorganic and Medicinal Chemistry Letters, vol. 12, no. 20, pp. 2811–2814, 2002.
  • [360] S. Ogawa, S. Fujieda, Y. Sakata, M. Ishizaki, S. Hisamatsu, and K. Okazaki, “Synthesis and glycosidase inhibitory activity of some N-substituted 6-deoxy-5a-carba-𝛽-dl- and L-galactopyranosylamines,” Bioorganic and Medicinal Chemistry Letters, vol. 13, no. 20, pp. 3461–3463, 2003.
  • [361] J. W. Gavin, S. T. Jon, and E. J. Toone, “Natural product glycosyltransferases: properties and applications,” Advances in Enzymology and Related Areas of Molecular Biology, vol. 76, pp. 55–119, 2009.
  • [362] Y. Kajihara, H. Hashimoto, and S. Ogawa, “Galactosyl transfer ability of 𝛽-(1→4)-galactosyltransferase toward 5a-carbasugars,” Carbohydrate Research, vol. 323, no. 1–4, pp. 44–48, 1999.
  • [363] H. Qian, B. Hu, Z. Wang, X. Xu, and T. Hong, “Effects of validamycin on some enzymatic activities in soil,” Environmental Monitoring and Assessment, vol. 125, no. 1–3, pp. 1–8, 2007.
  • [364] R. Ishikawa, K. Shirouzu, H. Nakashita, T. Teraoka, and T. Arie, “Control efficacy of validamycin A against Fusarium wilt correlated with the severity of phytotoxic necrosis formed on tomato tissues,” Journal of Pesticide Science, vol. 32, no. 2, pp. 83–88, 2007.
  • [365] B. M. Naik, J. Priya, K. U. Solanky, L. Mahatma, B. P. Mehta, and A. N. Sabalpara, “Evaluation of newer fungicides for the management of foliar pathogens of banana,” Pestology, vol. 34, no. 10, pp. 40–43, 2010.
  • [366] Y. H. Lee, C. W. Choi, S. H. Kim et al., “Chemical pesticides and plant essential oils for disease control of tomato bacterial wilt,” Plant Pathology Journal, vol. 28, no. 1, pp. 32–39, 2012.
  • [367] J. P. Guirao-Abad, R. Sanchez-Fresneda, E. Valent ´ ´ın, M. Mart´ınez-Esparza, and J.-C. Arguelles, “Analysis of validamycin ¨ as a potential antifungal compound against Candida albicans,” International Microbiology, vol. 16, no. 4, pp. 217–225, 2013.
  • [368] S. Nwaka and H. Holzer, “Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae,” Progress in nucleic acid research and molecular biology, vol. 58, pp. 197–237, 1998.
  • [369] A. Barraza and F. Sanchez, “Trehalases: a neglected carbon ´ metabolism regulator?” Plant Signaling & Behavior, vol. 8, no. 7, Article ID e24778, 2013. International Journal of Carbohydrate Chemistry 41
  • [370] J. Muller, T. Boller, and A. Wiemken, “Trehalose and trehalase ¨ in plants: recent developments,” Plant Science, vol. 112, no. 1, pp. 1–9, 1995.
  • [371] N. Tatun, O. Wangsantitham, J. Tungjitwitayakul, and S. Sakurai, “Trehalase activity in fungus-growing termite, Odontotermes feae (Isoptera: Termitideae) and inhibitory effect ofvalidamycin,” Journal of Economic Entomology, vol. 107, no. 3, pp. 1224–1232, 2014.
  • [372] S. Lenka, G. Bhaktavatsalam, and B. Medhi, “Fungicidal control of sheath blight of rice,” Journal of Plant Protection and Environment, vol. 7, pp. 53–55, 2010.
  • [373] V. Bhuvaneswari and S. K. Raju, “Efficacy of new fungicide of strobilurin group against rice sheath blight caused by Rhizoctonia solani,” Journal of Mycology and Plant Pathology, vol. 43, pp. 447–451, 2013.
  • [374] O. Wakae and K. Matsuura, “Characteristics of validamycin as a fungicide for Rhizoctonia disease control. Review,” Journal of Plant Protection Research, vol. 8, pp. 81–92, 1975.
  • [375] J. Serneels, H. Tournu, and P. Van Dijck, “Tight control of trehalose content is required for efficient heat-induced cell elongation in Candida albicans,” The Journal of Biological Chemistry, vol. 287, no. 44, pp. 36873–36882, 2012.
  • [376] Z.-J. Wang, S. Ji, Y.-X. Si et al., “The effect of validamycin A on tyrosinase: inhibition kinetics and computational simulation,” International Journal of Biological Macromolecules, vol. 55, pp. 15–23, 2013.
  • [377] Y. H. Lee, Y.-S. Cho, S. W. Lee, and J. K. Hong, “Chemical and biological controls of balloon flower stem rots caused by Rhizoctonia solani and Sclerotinia sclerotiorum,” Plant Pathology Journal, vol. 28, no. 2, pp. 156–163, 2012.
  • [378] H. Berga and N. T. Tamb, “Use of pesticides and attitude to pest management strategies among rice and rice-fish farmers in the mekong delta, Vietnam,” International Journal of Pest Management, vol. 58, no. 2, pp. 153–164, 2012.
  • [379] H. Li, H. Su, S. B. Kim et al., “Enhanced production of trehalose in Escherichia coli by homologous expression of otsBA in the presence of the trehalase inhibitor, validamycin A, at high osmolarity,” Journal of Bioscience and Bioengineering, vol. 113, no. 2, pp. 224–232, 2012.
  • [380] K. Qian, T. Shi, T. Tang, S. Zhang, X. Liu, and Y. Cao, “Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani,” Microchimica Acta, vol. 173, no. 1-2, pp. 51– 57, 2011.
  • [381] M. Best, K. Koenig, K. McDonald, M. Schueller, A. Rogers, and R. A. Ferrieri, “Inhibition of trehalose breakdown increases new carbon partitioning into cellulosic biomass in Nicotiana tabacum,” Carbohydrate Research, vol. 346, no. 5, pp. 595–601, 2011.
  • [382] A. Biswas and M. K. Bag, “Strobilurins in management of sheath blight disease of rice: a review,” Pestology, vol. 34, no. 4, pp. 23– 26, 2010.
  • [383] L.-Q. Jin and Y.-G. Zheng, “Inhibitory effects of validamycin compounds on the termites trehalase,” Pesticide Biochemistry and Physiology, vol. 95, no. 1, pp. 28–32, 2009.
  • [384] M. Lopez, N. A. Tejera, and C. Lluch, “Validamycin A improves ´ the response of Medicago truncatula plants to salt stress by inducing trehalose accumulation in the root nodules,” Journal of Plant Physiology, vol. 166, no. 11, pp. 1218–1222, 2009.
  • [385] R. P. Gibson, T. M. Gloster, S. Roberts et al., “Molecular basis for trehalase inhibition revealed by the structure of trehalase in complex with potent inhibitors,” Angewandte Chemie— International Edition, vol. 46, no. 22, pp. 4115–4119, 2007.
  • [386] M. J. Madigan and J. Martinko, Eds., Brock Biology of Microorganisms, Prentice Hall, 11th edition, 2005.
  • [387] T. Nioh and S. Mizushima, “Effect of validamycin on the growth and morphology of Pellicularia sasakii,” Journal of General and Applied Microbiology, vol. 20, no. 6, pp. 373–383, 1974.
  • [388] M. Uyeda, A. Ikeda, T. Machimoto, and M. Shibata, “Effect of validamycin on production of some enzymes in Rhizoctonia solani,” Agricultural and Biological Chemistry, vol. 49, no. 12, pp. 3485–3491, 1985.
  • [389] Y. Kido, T. Nagasato, and K. Ono, “Change in a cell-wall component of Rhizoctonia solani inhibited by validamycin,” Agricultural and Biological Chemistry, vol. 50, no. 6, pp. 1519– 1525, 1986.
  • [390] M. Uyeda, A. Ikeda, T. Ogata, and M. Shibata, “Effect of validamycin on 𝛽-D-glucan-degrading enzymes from Rhizoctonia solani,” Agricultural and Biological Chemistry, vol. 50, no. 7, pp. 1885–1886, 1986.
  • [391] Y. Kameda, N. Asano, T. Yamaguchi, and K. Matsui, “Validoxylamines as trehalase inhibitors,” Journal of Antibiotics, vol. 40, no. 4, pp. 563–565, 1987.
  • [392] N. Asano, M. Takeuchi, Y. Kameda, K. Matsui, and Y. Kono, “Trehalase inhibitors, validoxylamine A and related compounds as insecticides,” Journal of Antibiotics, vol. 43, no. 6, pp. 722–726, 1990.
  • [393] R. Shigemoto, T. Okuno, and K. Matsuura, “Effects of validamycin A on the growth of and trehalose content in mycelia of Rhizoctonia solani incubated in a medium containing several sugars as the sole carbohydrate,” Annals of the Phytopathological Society of Japan, vol. 58, pp. 685–690, 1992.
  • [394] N. Asano, T. Yamaguchi, Y. Kameda, and K. Matsui, “Effect of validamycins on glycohydrolases of Rhizoctonia solani,” Journal of Antibiotics, vol. 40, no. 4, pp. 526–532, 1987.
  • [395] S. Ogawa, K. Sato, and Y. Miyamoto, “Synthesis and trehalaseinhibitory activity of an imino-linked dicarba-𝛼,𝛼-trehalose and analogues thereof,” Journal of the Chemical Society, Perkin Transactions 1, no. 6, pp. 691–696, 1993.
  • [396] S. Ogawa, K. Nishi, and Y. Shibata, “Synthesis of a carbasugar analog of trehalosamine, [(1S)-(1,2, 4 3,5)-2-amino-3,4-dihydroxy-5-hydroxymethyl-1-cyclohexyl] 𝛼-d-glucopyranoside, and a revised synthesis of its 𝛽 anomer,” Carbohydrate Research, vol. 206, no. 2, pp. 352–360, 1990.
  • [397] S. Ogawa and Y. Shibata, “Synthesis of biologically active pseudo-trehalosamine: [(1S)-(1,2,4/3,5)-2,3,4-trihydroxy-5-hydroxymethyl-1-cyclohexyl] 2-amino-2-deoxy-𝛼-d-glucopyranoside,” Carbohydrate Research, vol. 176, no. 2, pp. 309–315, 1988.
  • [398] K.-I. Fukuhara, H. Murai, and S. Murao, “Isolation and structure-activity relationship of some amylostatins (F-1b fraction) produced by streptomyces diastaticus subsp. amylostaticus,” Agricultural and Biological Chemistry, vol. 46, no. 7, pp. 1941–1945, 1982.
  • [399] S. Namiki, K. Kangouri, T. Nagate et al., “Studies on the 𝛼- glucoside hydrolase inhibitor, adiposin. IV. Effect of adiposin on intestinal digestion of carbohydrates in experimental animals,” Journal of Antibiotics, vol. 35, no. 9, pp. 1167–1173, 1982.
  • [400] S. Omoto, J. Itoh, T. Shomura et al., “Oligostatins, new antibiotics with amylase inhibitory activity. I. Production, isolation and characterization,” Journal of Antibiotics, vol. 34, no. 11, pp. 1424–1428, 1981. 42 International Journal of Carbohydrate Chemistry
  • [401] S. Ogawa, Y. Shibata, Y. Kosuge, K. Yasuda, T. Mizukoshi, and C. Uchida, “Synthesis of potent 𝛼-glucosidase inhibitors: Methyl acarviosin analogue composed of 1,6-anhydro-𝛽-Dglucopyranose residue,” Journal of the Chemical Society, Chemical Communications, no. 20, pp. 1387–1388, 1990.
  • [402] Y. Shibata, Y. Kosuge, T. Mizukoshi, and S. Ogawa, “Chemical modification of the sugar part of methyl acarviosin: synthesis and inhibitory activities of nine analogues,” Carbohydrate Research, vol. 228, no. 2, pp. 377–398, 1992.
  • [403] S. Ogawa and D. Aso, “Chemical modification of the sugar moiety of methyl acarviosin: synthesis and inhibitory activity of eight analogues containing a 1,6-anhydro bridge,” Carbohydrate Research, vol. 250, no. 1, pp. 177–184, 1993.
  • [404] S. Ogawa, S. Ogawa, and H. Tsunoda, “Chemical synthesis of glycosylamide and cerebroside analogs composed of carba sugars,” Methods in Enzymology, vol. 247, pp. 136–143, 1994.
  • [405] S. Ogawa, S.-I. Sasaki, and H. Tsunoda, “Synthesis of carbocyclic analogues of the mannosyl trisaccharide: ether- and imino-linked methyl 3,6-bis(5a-carba-𝛼-d-mannopyranosyl)- 3,6-dideoxy-𝛼-d-mannopyranosides,” Carbohydrate Research, vol. 274, pp. 183–196, 1995.
  • [406] S. Ogawa, T. Furuya, H. Tsunoda, O. Hindsgaul, K. Stangier, and M. M. Palcic, “Synthesis of 𝛽-d-GlcpNAc-(1 → 2)-5a-carba- 𝛼-d-Manp-(1 → 6)-𝛽-d-Glcp-O(CH2)7CH3: a reactive acceptor analog for N-acetylglucosaminyltransferase-V,” Carbohydrate Research, vol. 271, no. 2, pp. 197–205, 1995.
  • [407] S. I. Hakomori, “Aberrant glycosylation in tumors and tumorassociated carbohydrate antigens,”Advances in Cancer Research, vol. 52, pp. 257–331, 1989.
  • [408] H. Schachter, “Molecular cloning of glycosyltranferase genes,” in Molecular Glycobiology, M. Fukuda and O. Hindsgaul, Eds., pp. 86–162, IRL Press, New York, NY, USA, 1994.
  • [409] J. P. Prieels, D. Monnom, M. Dolmans, T. A. Beyer, and R. L. Hill, “Co-purification of the Lewis blood group Nacetylglucosaminide alpha 1 goes to 4 fucosyltransferase and an N-acetylglucosaminide alpha 1 goes to 3 fucosyltransferase from human milk,” The Journal of Biological Chemistry, vol. 256, pp. 10456–10463, 1981.
  • [410] B. A. Macher, E. H. Holmes, S. J. Swiedler, C. L. M. Stults, and C. A. Srnka, “Human 𝛼1–3 fucosyltransferases,” Glycobiology, vol. 1, no. 6, pp. 577–584, 1991.
  • [411] T. de Vries, R. M. A. Knegtel, E. H. Holmes, and B. A. Macher, “Fucosyltransferases: structure/function studies,” Glycobiology, vol. 11, no. 10, pp. 119R–128R, 2001.
  • [412] D. J. Becker and J. B. Lowe, “Fucose: biosynthesis and biological function in mammals,” Glycobiology, vol. 13, no. 7, pp. 41R–53R, 2003.
  • [413] S. Ogawa, N. Matsunaga, and M. M. Palcic, “Synthesis of biological interest: ether linked octyl 5a-carba-𝛽-lactosaminide and related compounds,” Carbohydrate letters, vol. 2, pp. 299– 306, 1997.
  • [414] S. Ogawa, N. Matsunaga, H. Li, and M. M. Palcic, “Synthesis of ether- and imino-linked octyl N-Acetyl-5a󸀠 -carba-𝛽- lactosaminides and -isolactosaminides: acceptor substrates for 𝛼-(1 → 3/4)-fucosyltransferase, and enzymatic synthesis of 5a󸀠 -carbatrisaccharides,” European Journal of Organic Chemistry, no. 3, pp. 631–642, 1999.
  • [415] S. Ogawa, K. Gamou, Y. Kugimiya, Y. Senba, A. Lu, and M. M. Palcic, “Synthesis of octyl N-acetyl-5a-carba-𝛽-lactosaminide and-isolactosaminide: acceptor substrates for 𝛼1,3- fucosyltransferase V and 𝛼2,3-(N) sialyltransferase,” Carbohydrate Letters, vol. 3, no. 6, pp. 451–456, 2000.