The Protein Composition and In Vitro Digestive Characteristics of Animal- versus Plant-Based Infant Nutritional Products

  1. Byrne, Margaret E. 2
  2. Arranz, Elena 2
  3. Bot, Francesca 2
  4. Gómez-Mascaraque, Laura G. 1
  5. Tobin, John T. 1
  6. O’Mahony, James A. 2
  7. O’Callaghan, Tom F. 2
  1. 1 Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy Co., P61 C996 Cork, Ireland
  2. 2 School of Food and Nutritional Sciences, University College Cork, T12 TP07 Cork, Ireland
Revista:
Foods

ISSN: 2304-8158

Año de publicación: 2023

Volumen: 12

Número: 7

Páginas: 1469 (1-16)

Tipo: Artículo

DOI: 10.3390/FOODS12071469 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Foods

Resumen

The protein composition and digestive characteristics of four commercially available infant formulae (IF) manufactured using bovine (B-IF), caprine (C-IF), soy (S-IF), and rice (R-IF) as a protein source were examined in this study. Plant-based formulae had significantly higher crude protein and non-protein nitrogen (NPN) concentrations. Static in vitro gastrointestinal digestion of these formulae, and subsequent analysis of their digestates, revealed significantly higher proteolysis of B-IF at the end of gastrointestinal digestion compared to the other formulae, as indicated by the significantly higher concentration of free amine groups. Furthermore, differences in structure formation during the gastric phase of digestion were observed, with formation of a more continuous, firmer coagulum by C-IF, while R-IF demonstrated no curd formation likely due to the extensive hydrolysis of these proteins during manufacture. Differences in digestive characteristics between formulae manufactured from these different protein sources may influence the bio-accessibility and bioavailability of nutrients, warranting additional study.

Referencias bibliográficas

  • Michaelsen, (2014), Am. J. Clin. Nutr., 99, pp. 718S, 10.3945/ajcn.113.072603
  • Park, Y.W., Haenlein, G.F.W., and Wendorff, W.L. (2017). Handbook of Milk of Non-Bovine Mammals, John Wiley & Sons, Incorporated. [2nd ed.].
  • Park, Y.W., and Haenlein, G.F.W. (2013). Milk and Dairy Products in Human Nutrition: Production, Composition and Health, Wiley-Blackwell.
  • Agostoni, (2006), J. Pediatr. Gastroenterol. Nutr., 42, pp. 352, 10.1097/01.mpg.0000189358.38427.cd
  • Schoemaker, (2015), Allergy, 70, pp. 963, 10.1111/all.12630
  • Janssen, (2016), Appetite, 105, pp. 643, 10.1016/j.appet.2016.06.039
  • Barone, (2021), J. Sci. Food Agric., 102, pp. 5044
  • Chacon, (2020), Int. Food Res. J., 130, pp. 108917, 10.1016/j.foodres.2019.108917
  • Boye, (2012), Br. J. Nutr., 108, pp. S183, 10.1017/S0007114512002309
  • Gan, (2018), Mol. Nutr. Food Res., 62, pp. 1700231, 10.1002/mnfr.201700231
  • Tari, (2018), J. Dairy Sci., 101, pp. 2851, 10.3168/jds.2017-13245
  • Turgeon, (2011), Food Hydrocoll., 25, pp. 1915, 10.1016/j.foodhyd.2011.02.026
  • Corrigan, (2020), Int. Dairy J., 110, pp. 104810, 10.1016/j.idairyj.2020.104810
  • Dupont, (2010), Food Dig., 1, pp. 28, 10.1007/s13228-010-0003-0
  • He, (2021), Int. J. Food Sci. Nutr., 73, pp. 28, 10.1080/09637486.2021.1921705
  • Maathuis, (2017), J. Pediatr. Gastroenterol. Nutr., 65, pp. 661, 10.1097/MPG.0000000000001740
  • Phosanam, (2021), Int. J. Dairy, 117, pp. 105008, 10.1016/j.idairyj.2021.105008
  • Ye, (2019), Int. Dairy J., 97, pp. 76, 10.1016/j.idairyj.2019.06.002
  • Nguyen, (2015), Food Res. Int., 76, pp. 348, 10.1016/j.foodres.2015.07.030
  • Fan, (2022), J. Future Foods, 2, pp. 143, 10.1016/j.jfutfo.2022.03.003
  • Corrochano, (2019), Food Chem., 288, pp. 306, 10.1016/j.foodchem.2019.03.009
  • Bourlieu, (2014), Crit. Rev. Food Sci. Nutr., 54, pp. 1427, 10.1080/10408398.2011.640757
  • Brodkorb, (2019), Nat. Protoc., 14, pp. 991, 10.1038/s41596-018-0119-1
  • Minekus, (2014), Food Funct., 5, pp. 1113, 10.1039/C3FO60702J
  • Bourlieu, (2018), Food Chem., 240, pp. 338, 10.1016/j.foodchem.2017.07.145
  • ISO (2001). Part 1: Kjeldahl Method ISO 8968-1: 2001 (IDF 20-1:2001), International Standardisation Organisation.
  • Sahin, (2023), Eur. Food Res. Technol., 249, pp. 573, 10.1007/s00217-022-04152-2
  • Nielsen, (2001), J. Food Sci., 66, pp. 642, 10.1111/j.1365-2621.2001.tb04614.x
  • McDermott, (2016), J. Dairy Sci., 99, pp. 3171, 10.3168/jds.2015-9747
  • O’Callaghan, T.F., Mannion, D., Apopei, D., McCarthy, N.A., Hogan, S.A., Kilcawley, K.N., and Egan, M. (2019). Influence of Supplemental Feed Choice for Pasture-Based Cows on the Fatty Acid and Volatile Profile of Milk. Foods, 8.
  • Bhatia, (2008), Pediatrics, 121, pp. 1062, 10.1542/peds.2008-0564
  • Dupont, C., Bocquet, A., Tomé, D., Bernard, M., Campeotto, F., Dumond, P., Essex, A., Frelut, M.-L., Guénard-Bilbault, L., and Lack, G. (2020). Hydrolyzed rice protein-based formulas, a vegetal alternative in cow’s milk allergy. Nutrients, 12.
  • EFSA NDA Panel (2014). Scientific opinion on the essential composition of infant and follow-on formulae. EFSA J., 12, 3760.
  • Koletzko, (2005), J. Pediatr. Gastroenterol. Nutr., 41, pp. 584, 10.1097/01.mpg.0000187817.38836.42
  • Fox, P.F., Uniacke-Lowe, T., McSweeney, P.L.H., and O’Mahony, J.A. (2015). Dairy Chemistry and Biochemistry, Springer International Publishing. [2nd ed.].
  • Donovan, (1989), Acta Paediatr. Scand., 78, pp. 497, 10.1111/j.1651-2227.1989.tb17927.x
  • Fleddermann, (2013), Clin. Nutr., 32, pp. 519, 10.1016/j.clnu.2012.11.005
  • Vishwanathan, (2011), J. Food Sci., 76, pp. E158, 10.1111/j.1750-3841.2010.01917.x
  • Prosser, (2008), Int. J. Food Sci. Nutr., 59, pp. 123, 10.1080/09637480701425585
  • Bocquet, (2019), Arch. Pediatr., 26, pp. 238, 10.1016/j.arcped.2019.03.001
  • Grossmann, (2021), Annu. Rev. Food Sci. Technol., 12, pp. 93, 10.1146/annurev-food-062520-093642
  • Venkateswara Rao, M., CK, S., Rawson, A., and DV, C. (2021). Modifying the plant proteins techno-functionalities by novel physical processing technologies: A review. Crit. Rev. Food Sci. Nutr., 1–22. ahead of print.
  • Brodkorb, (2021), Food Funct., 12, pp. 8747, 10.1039/D1FO01223A
  • Lee, (2003), J. Am. Oil Chem. Soc., 80, pp. 85, 10.1007/s11746-003-0656-6
  • Amagliani, (2017), Trends Food Sci. Technol., 64, pp. 1, 10.1016/j.tifs.2017.01.008
  • Prosser, (2021), J. Food Sci., 86, pp. 257, 10.1111/1750-3841.15574
  • Park, (2007), Small Rumin. Res., 68, pp. 88, 10.1016/j.smallrumres.2006.09.013
  • Dupont, (2010), Mol. Nutr. Food Res., 54, pp. 767, 10.1002/mnfr.200900142
  • Dupont, D., and Tomé, D. (2020). Milk Proteins, Elsevier.
  • Medic, (2014), J. Am. Oil Chem. Soc., 91, pp. 363, 10.1007/s11746-013-2407-9
  • Nguyen, (2015), Food Res. Int., 76, pp. 373, 10.1016/j.foodres.2015.07.016
  • Zhou, (2014), Br. J. Nutr., 111, pp. 1641, 10.1017/S0007114513004212
  • Rutherfurd, (2006), J. Dairy Sci., 89, pp. 2408, 10.3168/jds.S0022-0302(06)72313-X
  • Tagliazucchi, (2018), Int. Dairy J., 81, pp. 19, 10.1016/j.idairyj.2018.01.014
  • Gilani, (2012), Br. J. Nutr., 108, pp. S315, 10.1017/S0007114512002371
  • Vagadia, (2017), Trends Food Sci. Technol., 64, pp. 115, 10.1016/j.tifs.2017.02.003
  • Carbonaro, (2012), Amino Acids, 43, pp. 911, 10.1007/s00726-011-1151-4
  • Wang, (2016), J. Cereal Sci., 72, pp. 108, 10.1016/j.jcs.2016.10.006
  • Roy, (2020), Front. Nutr., 7, pp. 577759, 10.3389/fnut.2020.577759
  • Mackie, (2019), Food Hydrocoll., 86, pp. 172, 10.1016/j.foodhyd.2018.03.035
  • Saha, (2020), Food Chem., 319, pp. 126514, 10.1016/j.foodchem.2020.126514
  • Rigby, (2017), Food Hydrocoll., 67, pp. 63, 10.1016/j.foodhyd.2016.12.039
  • Wang, (2019), Food Hydrocoll., 96, pp. 161, 10.1016/j.foodhyd.2019.05.020
  • Wouters, (2016), Compr. Rev. Food Sci. Food Saf., 15, pp. 786, 10.1111/1541-4337.12209
  • Makinen, (2015), Food Chem., 168, pp. 630, 10.1016/j.foodchem.2014.07.036