Prediction of Carcass Composition and Meat and Fat Quality Using Sensing Technologies: A Review

  1. Leighton, Patricia L. A. 1
  2. Segura, Jose 1
  3. Lam, Stephanie 1
  4. Marcoux, Marcel 2
  5. Wei, Xinyi 1
  6. Lopez-Campos, Oscar 1
  7. Soladoye, Philip 1
  8. Dugan, Mike E. R. 1
  9. Juarez, Manuel 1
  10. Prieto, Nuria 1
  1. 1 Agriculture and Agri-Food Canada Lacombe Research and Development Centre
  2. 2 Agriculture and Agri-Food Canada Sherbrooke Research and Development Centre
Revista:
Meat and Muscle Biology

ISSN: 2575-985X

Año de publicación: 2022

Volumen: 5

Número: 3

Páginas: 12951

Tipo: Artículo

DOI: 10.22175/MMB.12951 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Meat and Muscle Biology

Objetivos de desarrollo sostenible

Resumen

Consumer demand for high-quality healthy food is increasing; therefore, meat processors require the means toassess their products rapidly, accurately, and inexpensively. Traditional methods for quality assessments are time-consum-ing, expensive, and invasive and have potential to negatively impact the environment. Consequently, emphasis has been puton finding nondestructive, fast, and accurate technologies for product composition and quality evaluation. Research in thisarea is advancing rapidly through recent developments in the areas of portability, accuracy, and machine learning.Therefore, the present review critically evaluates and summarizes developments of popular noninvasive technologies(i.e., from imaging to spectroscopic sensing technologies) for estimating beef, pork, and lamb composition and quality,which will hopefully assist in the implementation of these technologies for rapid evaluation/real-time grading of livestockproducts in the near future.

Referencias bibliográficas

  • (2014), Can. J. Anim. Sci, 94, pp. 545, 10.4141/cjas-2014-038
  • (2020), Foods, 9, pp. 836, 10.3390/foods9060836
  • (2010), Lignin and lignans: advances in chemistry, pp. 103
  • (2020), Anal. Bioanal. Chem, 412, pp. 1169, 10.1007/s00216-019-02345-5
  • (2021), Meat Sci, 181, pp. 108470, 10.1016/j.meatsci.2021.108470
  • (2021), J. Anim. Sci. Tech, 63, pp. 332, 10.5187/jast.2021.e31
  • (2021), Meat Sci, 172, pp. 108357, 10.1016/j.meatsci.2020.108357
  • (2018), Meat Sci, 145, pp. 94, 10.1016/j.meatsci.2018.06.016
  • (2021), Meat Sci, 181, pp. 108434, 10.1016/j.meatsci.2021.108434
  • (2019), Meat Sci, 158, pp. 107910, 10.1016/j.meatsci.2019.107910
  • (2020), Small Ruminant Res, 182, pp. 52, 10.1016/j.smallrumres.2019.106024
  • (2018), Meat Sci, 143, pp. 30, 10.1016/j.meatsci.2018.04.003
  • (2021), Meat Sci, 172, pp. 108342, 10.1016/j.meatsci.2020.108342
  • (2020), J. Anim. Sci, 98, pp. 1, 10.1093/jas/skaa342
  • (2021), Animals-Basel, 11, pp. 1368, 10.3390/ani11051368
  • (1994), J. Anim. Sci, 72, pp. 322, 10.2527/1994.722322x
  • (2020), Meat Sci, 159, pp. 107915, 10.1016/j.meatsci.2019.107915
  • (2021), Meat Sci, 173, pp. 108397, 10.1016/j.meatsci.2020.108397
  • (2020), Meat Sci, 167, pp. 108157, 10.1016/j.meatsci.2020.108157
  • (2020), J. Food Eng, 266, pp. 109693, 10.1016/j.jfoodeng.2019.109693
  • (2021), Food Chem, 342, pp. 128351, 10.1016/j.foodchem.2020.128351
  • (2020), Meat Sci, 167, pp. 107988, 10.1016/j.meatsci.2019.107988
  • (2018), J. Anim, 31, pp. 1670, 10.5713/ajas.18.0240
  • (1996), J. Anim. Sci, 74, pp. 2566, 10.2527/1996.74112566x
  • (2020a), Animal, 14, pp. 2194, 10.1017/S1751731120001019
  • (2020b), Meat Sci, 181, pp. 108413, 10.1016/j.meatsci.2020.108413
  • (2017), Meat Sci, 132, pp. 19, 10.1016/j.meatsci.2017.04.010
  • (2015), J. Raman Spectrosc, 46, pp. 4, 10.1002/jrs.4607
  • (2008), Meat Sci, 80, pp. 132, 10.1016/j.meatsci.2008.05.039
  • (2020), Meat Sci, 163, pp. 108077, 10.1016/j.meatsci.2020.108077
  • (2019), J. Food Process Eng, 42, pp. e13210, 10.1111/jfpe.13210
  • (2020a), Meat Sci., 181, pp. 108405, 10.1016/j.meatsci.2020.108405
  • (2017), Compr. Rev. Food Sci. F, 16, pp. 1172, 10.1111/1541-4337.12295
  • (2020b), Meat Sci, 181, pp. 108410, 10.1016/j.meatsci.2020.108410
  • (2019), Frontmatec BCC-3 beef classification system study and installation in Australia beef industry [Final Report]
  • (2011)
  • (2019)
  • (2020), LWT- Food Sci. Technol, 118, pp. 108817, 10.1016/j.lwt.2019.108817
  • Fiorentini, G., C. A. Fugita, L. Bellomo, A. I. Negueruela, C. Sañudo, and M. M. Campo. 2017. NIR determination of meat quality characteristics at different lamb carcass points. Congress Proceedings, 63rd International Congress of Meat Science & Technology, Cork, Ireland, 13–18 August 2017.
  • (2009), Meat Sci, 83, pp. 443, 10.1016/j.meatsci.2009.06.018
  • (2019), Animal, 13, pp. 666, 10.1017/S1751731118002021
  • (2021), Livest. Sci, 243, pp. 104371, 10.1016/j.livsci.2020.104371
  • Fowler, S. M., B. W. B. Holman, M. T. Newell, G. Refshauge, R. C. Hayes, and D. L. Hopkins. 2021a. Prediction of eating quality of lamb loin using Raman spectroscopic technologies. Congress Proceedings, 33rd Biennial Conference of the Australian Association of Animal Sciences, Perth, Australia, 1–3 February 2021.
  • (2015a), Meat Sci, 110, pp. 70, 10.1016/j.meatsci.2015.06.016
  • (2018), Meat Sci, 138, pp. 53, 10.1016/j.meatsci.2018.01.002
  • (2015b), Meat Sci, 108, pp. 138, 10.1016/j.meatsci.2015.06.010
  • (2014), Meat Sci, 98, pp. 652, 10.1016/j.meatsci.2014.06.042
  • (2021b), Meat Sci, 177, pp. 108505, 10.1016/j.meatsci.2021.108505
  • (2009), Can. J. Agr. Econ, 57, pp. 119, 10.1111/j.1744-7976.2008.01141.x
  • (2017), SICE Journal of Control, Measurement, and System Integration, 10, pp. 297, 10.9746/jcmsi.10.297
  • (2019), Food Sci. Tech.-Brazil, 39, pp. 88, 10.1590/fst.27417
  • (2021), Meat Sci, 173, pp. 108400, 10.1016/j.meatsci.2020.108400
  • (2018), Meat Sci, 144, pp. 91, 10.1016/j.meatsci.2018.06.020
  • (2021), Anim. Prod. Sci, 61, pp. 191, 10.1071/AN20084
  • (2009), Remote Sens. Environ, 113, pp. S5, 10.1016/j.rse.2007.12.014
  • (2018), Animal, 12, pp. s246, 10.1017/S1751731118002288
  • (2004), Meat Sci, 66, pp. 259, 10.1016/s0309-1740(03)00130-x
  • (1988), APMIS, 96, pp. 379, 10.1111/j.1699-0463.1988.tb05320.x
  • (2020), Processes, 8, pp. 988, 10.3390/pr8080988
  • (2021a), Meat Sci, 181, pp. 108376, 10.1016/j.meatsci.2020.108376
  • (2021b), Meat Sci, 179, pp. 108492, 10.1016/j.meatsci.2021.108492
  • (2012), Meat Sci, 90, pp. 629, 10.1016/j.meatsci.2011.10.005
  • (2014), Appl. Spectrosc, 68, pp. 332, 10.1366/13-07242
  • (2021), Sensors-Basel, 21, pp. 1001, 10.3390/s21031001
  • (2019), Anim. Prod. Sci, 59, pp. 1183, 10.1071/an15625
  • (2004), Int. J. Food Prop, 7, pp. 301, 10.1081/jfp-120030039
  • (2019), Food Anal. Method, 12, pp. 2205, 10.1007/s12161-019-01577-6
  • (2017), Can. J. Anim. Sci, 98, pp. 390, 10.1139/cjas-2017-0106
  • (2016a), LWT-Food Sci. Technol., 66, pp. 685, 10.1016/j.lwt.2015.11.021
  • (2016b), Meat Sci, 116, pp. 110, 10.1016/j.meatsci.2016.02.004
  • (2018), Impedance spectroscopy: Advanced applications: battery research, bioimpedance, system design
  • (2019), Meat Sci, 148, pp. 79, 10.1016/j.meatsci.2018.10.005
  • (2019), Meat Sci, 155, pp. 102, 10.1016/j.meatsci.2019.05.009
  • (2020), Animals-Basel, 10, pp. 1912, 10.3390/ani10101912
  • (2021a), Meat Sci, 176, pp. 108458, 10.1016/j.meatsci.2021.108458
  • (2021b), Food Eng. Rev, 13, pp. 274, 10.1007/s12393-020-09246-9
  • (2019), Food Rev. Int, 35, pp. 536, 10.1080/87559129.2019.1584814
  • (2020), Can. J. Anim. Sci, 101, pp. 386, 10.1139/cjas-2020-0049
  • (2021), Meat Sci, 171, pp. 108286, 10.1016/j.meatsci.2020.108286
  • Laurence, F. 2013. Horsemeat scandal: the essential guide. The Guardian. https://www.theguardian.com/uk/2013/feb/15/horsemeat-scandal-the-essential-guide (Accessed 29 April 2021).
  • (2019a), Comput. Electron. Agr, 157, pp. 447, 10.1016/j.compag.2019.01.019
  • (2019b), Comput. Electron. Agr, 165, pp. 104977, 10.1016/j.compag.2019.104977
  • (2021), Food Control, 121, pp. 107652, 10.1016/j.foodcont.2020.107652
  • (2018), Korean J. Food Sci. Anim. Resour, 38, pp. 1109, 10.5851/kosfa.2018.e44
  • (2019), CAB Reviews, 14, pp. 1, 10.1079/pavsnnr201914018
  • (2018), Meat Sci, 146, pp. 140, 10.1016/j.meatsci.2018.07.009
  • (2017), Livest. Sci, 197, pp. 88, 10.1016/j.livsci.2017.01.010
  • (2018), LWT-Food Sci. Technol., 94, pp. 119, 10.1016/j.lwt.2018.04.030
  • (2019), J. Food Eng, 240, pp. 207, 10.1016/j.jfoodeng.2018.07.032
  • (2021), Foods, 10, pp. 1177, 10.3390/foods10061177
  • (2021), J. Food Eng, 299, pp. 110501, 10.1016/j.jfoodeng.2021.110501
  • (2018), Appetite, 127, pp. 324, 10.1016/j.appet.2018.05.008
  • (2019)
  • (2020), Sensors, 20, pp. 4299, 10.3390/s20154299
  • (2020), Meat Sci, 169, pp. 108192, 10.1016/j.meatsci.2020.108192
  • (2019), Animal, 13, pp. 1744, 10.1017/S1751731118003178
  • (2017), Advances in meat processing technology., pp. 269
  • (2019), Meat quality analysis: Advanced evaluation methods, techniques, and technologies, pp. 37
  • (2018), Infrared Phys. Techn, 89, pp. 247, 10.1016/j.infrared.2018.01.005
  • (2017), Meat Sci, 123, pp. 35, 10.1016/j.meatsci.2016.08.013
  • (2020), J. Raman Spectrosc, 51, pp. 711, 10.1002/jrs.5830
  • (2018), Curr. Opin. Food Sci., 22, pp. 115, 10.1016/j.cofs.2018.01.009
  • (2021), Comput. Electron. Agr, 183, pp. 105987, 10.1016/j.compag.2021.105987
  • (1994), J. Anim. Sci, 72, pp. 117, 10.2527/1994.721117x
  • (2021), Meat Sci, 178, pp. 108518, 10.1016/j.meatsci.2021.108518
  • (2011), International Journal of Meat Science, 1, pp. 83, 10.3923/ijmeat.2011.83.92
  • (2017), Ital. J. Food Sci, 29, pp. 463, 10.14674/1120-1770/ijfs.v604
  • (2001), Aust. J. Exp. Agr, 41, pp. 981, 10.1071/EA00023
  • (2018), Meat Sci, 137, 10.1016/j.meatsci.2017.11.032
  • (2010), Meat Sci, 86, pp. 227, 10.1016/j.meatsci.2010.05.010
  • (2018a), Can. J. Anim. Sci, 98, pp. 221, 10.1139/cjas-2017-0033
  • (2018b), CAB Reviews, 13, pp. 1, 10.1079/pavsnnr201813042
  • (2017), Appl. Spectrosc, 71, pp. 1403, 10.1177/0003702817709299
  • (2009), Meat Sci, 83, pp. 175, 10.1016/j.meatsci.2009.04.016
  • (2014), J. Food Eng, 143, pp. 44, 10.1016/j.jfoodeng.2014.06.025
  • (2020), Food Anal. Method, 13, pp. 970, 10.1007/s12161-020-01719-1
  • (2020), Animal, 14, pp. s360, 10.1017/S1751731120001469
  • (2020), Sensors, 20, pp. 6892, 10.3390/s20236892
  • (2009), J. Anim. Sci, 87, pp. 1455, 10.2527/jas.2008-1285
  • (2021), Food Chem, 343, pp. 128441, 10.1016/j.foodchem.2020.128441
  • (2019), Foods, 8, pp. 525, 10.3390/foods8110525
  • (2021), Animal, 15, pp. 100212, 10.1016/j.animal.2021.100212
  • (2018), Meat Sci, 145, pp. 79, 10.1016/j.meatsci.2018.05.021
  • (2021), J. Anim. Sci. Biotechno, 12, pp. 1, 10.1186/s40104-021-00555-5
  • (2021), Foods, 10, pp. 1118, 10.3390/foods10051118
  • (2016), Rev, 8, pp. 306, 10.1007/s12393-015-9137-8
  • (2005), Modern raman spectroscopy: a practical approach
  • (2018), Meat Sci, 142, pp. 1, 10.1016/j.meatsci.2018.03.025
  • (2021), Anim. Prod. Sci, 61, pp. 620, 10.1071/AN20078_CO
  • (2021), Meat Sci, 181, pp. 108358, 10.1016/j.meatsci.2020.108358
  • (1992), J. Anim. Sci, 70, pp. 169, 10.2527/1992.701169x
  • (2016), Ann. Anim. Sci, 16, pp. 275, 10.1515/aoas-2015-0057
  • (2016), Vet. Clin. N. Am.-Food A, 32, pp. 207, 10.1016/j.cvfa.2015.09.007
  • (2018), Crit. Rev. Food Sci, 58, pp. 1565, 10.1080/10408398.2016.1261332
  • (2009), J. Anim. Sci, 87, pp. 1801, 10.2527/jas.2008-1002
  • (2004), Chemometr. Intell. Lab, 73, pp. 169, 10.1016/j.chemolab.2004.01.002
  • (2019), Meat Sci, 148, pp. 5, 10.1016/j.meatsci.2018.09.015
  • (2016), Meat Sci, 120, pp. 2, 10.1016/j.meatsci.2016.04.002
  • (2021), Meat Sci, 179, pp. 108549, 10.1016/j.meatsci.2021.108549
  • (2021), Vet. World, 14, pp. 259, 10.14202/vetworld.2021.259-264
  • (2016), Sensors, 16, pp. 618, 10.3390/s16050618
  • (2017), Meat Sci, 133, pp. 43, 10.1016/j.meatsci.2017.06.002
  • (2018a), J. Food Eng, 237, pp. 103, 10.1016/j.jfoodeng.2018.05.022
  • (2018b), Food Anal. Method, 11, pp. 2707, 10.1007/s12161-018-1256-4
  • (2020a), Meat Sci, 169, pp. 108194, 10.1016/j.meatsci.2020.108194
  • (2020b), Food Anal. Method, 13, pp. 1764, 10.1007/s12161-020-01801-8
  • (2020), Spectrochim. Acta A, 230, pp. 118005, 10.1016/j.saa.2019.118005
  • (2017), Crit. Rev. Food Sci, 57, pp. 755, 10.1080/10408398.2014.954282
  • (2014), J. Food Eng, 132, pp. 1, 10.1016/j.jfoodeng.2014.02.004
  • (2010), Meat Sci, 85, pp. 487, 10.1016/j.meatsci.2010.02.020
  • (2011), Appl. Spectrosc. Rev, 46, pp. 539, 10.1080/05704928.2011.593216
  • (2020), Meat Sci, 165, pp. 108136, 10.1016/j.meatsci.2020.108136
  • (2018), J. Spectrosc, 2018, pp. 1, 10.1155/2018/2413874
  • (2019), Meat Sci, 152, pp. 73, 10.1016/j.meatsci.2019.02.017
  • (2020), Acta Agriculturae Zhejiangensis, 32, pp. 527, 10.3969/j.issn.1004-1524.2020.03.19
  • (2020), J. Food Sci, 85, pp. 1403, 10.1111/1750-3841.15137
  • (2019), Meat Sci, 151, pp. 75, 10.1016/j.meatsci.2019.01.010
  • (2017), J. Food Quality., 2017, pp. 1, 10.1155/2017/6370739
  • (2019), Meat Sci, 149, pp. 55, 10.1016/j.meatsci.2018.11.005
  • (2021), J. Food Process Eng, 44, pp. e13642, 10.1111/jfpe.13642