Estrategias innovadoras mediante escáner de luz estructurada para la digitalización en situaciones complejas de modelos anatómicos didácticos

  1. Hernández-Muñoz, Óscar 1
  2. Sterp Moga, Emanuel 2
  3. Sánchez-Ortiz, Alicia 2
  1. 1 Departamento de Diseño e Imagen. Facultad de Bellas Artes. UCM
  2. 2 Departamento de Pintura y Conservación-Restauración. Facultad de Bellas Artes. UCM
Journal:
Ge-conservación

ISSN: 1989-8568

Year of publication: 2023

Issue: 23

Pages: 53-64

Type: Article

DOI: 10.37558/GEC.V23I1.1110 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Ge-conservación

Abstract

Digitisation by structured light scanning has proven to be useful for the conservation-restoration of collections of didactic anatomical models. However, there are many circumstances in which scanning tasks are seriously hindered or lead to unsatisfactory results. The aim of this work was to design new strategies to achieve correct digitisation in some of these situations. A scanning method based on the use of mirrors has been tested to record hidden or inaccessible areas of a sculpture. A scanning procedure through glass is also proposed for artefacts that are not advisable to remove from the display case. Finally, for excessively bright figures, the usefulness of a new scanning function using polarised photographs has been analysed. In view of the results obtained, the analysed methods could be considered a valid option for the digitisation of this type of figures.

Bibliographic References

  • ADAMOPOULOS, E., RINAUDO, F. Y ARDISSONO, L. (2021). “A Critical Comparison of 3D Digitization Techniques for Heritage Objects”, ISPRS International Journal of Geo-Information, 10(1). https://doi.org/10.3390/ijgi10010010.
  • AKÇA, M. (2012). “3D modeling of cultural heritage objects with a structured light system”, Mediterranean Arhaeology and Archaeometry, 12(1): 139-152. Disponible en: http://acikerisim.isikun.edu.tr/xmlui/handle/11729/465 [consulta: 06/10/2021]
  • ANGHELUŢĂ, L.M. Y RĂDVAN, R. (2020). “3d digitization of translucid materials in cultural heritage objects: A comparative study between laser scanning and photogrammetry”, Romanian Journal of Physics, 65(7-8):1-12. Disponible en: https://rjp.nipne.ro/2020_65_7-8/RomJPhys.65.906.pdf [consulta: 28/11/2021]
  • BALZER, J., HÖLER, S. Y BEYERER, J. (2011). «Multiview specular stereo reconstruction of large mirror surfaces», Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (April 2015), 2537-2544. https://doi.org/10.1109/CVPR.2011.5995346.
  • BARONE, S., PAOLI, A. Y RAZIONALE, A.V. (2012). “3D Reconstruction and Restoration Monitoring of Sculptural Artworks by a Multi-Sensor Framework”, Sensors (Basel, Switzerland), 12(12): 16785. https://doi.org/10.1109/CVPR.2011.599534610.3390/S121216785.
  • BRINKMANN, V. Y KOCH-BRINKMANN, U. (2019). “The experimental reconstruction of the bronze warriors of Riace as part of the Frankfurt «Liebieghaus Polychromy Research Project»“, TECHNE, (48) 120-132. https://doi.org/10.4000/TECHNE.2707.
  • EREN, G. (2010). 3D scanning of transparent objects, Graduate School of Engineering and Natural Sciences. Universit´e de Bourgogne. Disponible en: https://acikbilim.yok.gov.tr/handle/20.500.12812/216960 (Accedido: 5 de marzo de 2022).
  • FELICÍSIMO, Á.M. Y POLO, M.E. (2022). «Measurement and control of colour fidelity in scanned 3D models for heritage conservation», Journal of Cultural Heritage, 56: 159-166. https://doi.org/10.1016/J.CULHER.2022.06.010.
  • FORBES, K., NICOLLS, F., DE JAGER, G. Y VOIGT, A. (2006). «Shape-from-Silhouette with Two Mirrors and an Uncalibrated Camera», Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3952 LNCS, 165-178. https://doi.org/10.1007/11744047_13.
  • GARCÍA-MOLINA, D. F. (2021). “Digitalization and 3D Documentation Techniques Applied to Two Pieces of Visigothic Sculptural Heritage in Merida through Structured Light Scanning”, Journal on Computing and Cultural Heritage, 14(4): 1-19. https://doi.org/10.1145/3427381.
  • GRACIANO, A., ALVARADO, L., SEGURA, R.J. Y FEITO, F.R. (2017) .“Digitization of religious artifacts with a structured light scanner”, Virtual Archaeology Review, 8(17), 49-55. https://doi.org/10.4995/VAR.2016.4650.
  • HERNÁNDEZ-MUÑOZ, Ó., ARANDA, D., MARURI, A., STERP, E., SÁNCHEZ-ORTIZ, A. (2022). “3D Digital Technologies for the Elaboration of a Replica of a Dermatological Didactic Model Belonging to the Olavide Museum from the Original Mould”, Heritage, 5(2): 702-715. https://doi.org/10.3390/HERITAGE5020039.
  • HERNÁNDEZ-MUÑOZ, Ó., SÁNCHEZ-ORTIZ, A. (2019). “Digitization and 3D printing for the reconstruction of volumetric losses in an anatomical wax model of the 18th century”, Conservar Património, 30: 59-72. https://doi.org/10.14568/cp2018003.
  • HERNÁNDEZ-MUÑOZ, Ó., SÁNCHEZ ORTIZ, A. Y MATÍA MARTÍN, P. (2019). “Anatomía animal. Técnicas digitales para la reconstrucción escultórica de la apariencia original de un modelo de cera del siglo XIX”, Intervención, Revista Internacional de Conservación, Restauración y Museología, 10(19): 64-76. https://doi.org/10.30763/intervencion.2019.19.209.
  • HU, B., BROWN, C. Y NELSON, R. (2005). Multiple-view 3-D Reconstruction Using a Mirror. Disponible en: https://pdfs.semanticscholar.org/df40/d4505c1ddd4111bca9517a57a25b5292934e.pdf.
  • HUANG, P.H. Y LAI, S.H. (2006) “Contour-based structure from reflection”, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1(October 2014), 379-386. https://doi.org/10.1109/CVPR.2006.88.
  • IHRKE, I. RESHETOUSKI, I., MANAKOV, A., TEVS, A., WAND, M. Y SEIDEL, H.P (2012). A kaleidoscopic approach to surround geometry and reflectance acquisition», en IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 29-36. https://doi.org/10.1109/CVPRW.2012.6239347.
  • JUN, M.B.G., JOSHI, S.S., DEVOR, R.E. Y KAPOOR, S.G. (2008) “An experimental evaluation of an atomization-based cutting fluid application system for micromachining”, Journal of Manufacturing Science and Engineering, 130(3): 0311181-0311188. https://doi.org/10.1115/1.2738961.
  • LAYCOCK, S.D., BELL, G.D., CORPS, N., MORTIMORE, D.B., COX, G. Y MAY, S.(2015) “Using a combination of micro-computed tomography, CAD and 3D printing techniques to reconstruct incomplete 19th-century cantonese chess pieces”, Journal on Computing and Cultural Heritage, 7(4) . https://doi.org/10.1145/2629682.
  • LIU, M., HARTLEY, R. Y SALZMANN, M. (2013) “Mirror surface reconstruction from a single image”, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (June), 129-136. https://doi.org/10.1109/CVPR.2013.24.
  • DE LUCA, D., GIUDICE, M. DEL, GRASSO, N., MATRONE, F., OSELLO, A. Y PIRAS, M. et al. (2019) “Handheld volumetric scanner for 3D printed integrations of historical elements: comparison and results”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2/W15). https://doi.org/10.5194/isprs-archives-XLII-2-W15-381-2019.
  • MONTUSIEWICZ, J., MIŁOSZ, M., KĘSIK, J., Y ŻYŁA, K. (2021). “Structured-light 3D scanning of exhibited historical clothing—a first-ever methodical trial and its results”, Heritage Science, 9(1). https://doi.org/10.1186/S40494-021-00544-X.
  • NIQUET, N.D. Y MÁS-BARBERÁ, X. (2018). “El Registro 3D como medio para el análisis y difusión del patrimonio escultórico. El caso de la escultura en cera del Écorché”, Ge-conservacion, 13: 05-16. https://doi.org/10.37558/GEC.V13I0.551.
  • DI PAOLA, F. Y INZERILLO, L. (2018). “3D reconstruction-reverse engineering-digital fabrication of the Egyptian Palermo stone using by smartphone and light structured scanner”, en International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. https://doi.org/10.5194/isprs-archives-XLII-2-311-2018.
  • DI PAOLA, F., MILAZZO, G. Y SPATAFORA, F. (2017) “Computer aided restoration tools to assist the conservation of an ancient sculpture, The colossal statue of Zeus enthroned”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2W5): 177-184. https://doi.org/10.5194/isprs-archives-XLII-2-W5-177-2017.
  • PAPADAKI, A.I., AGRAFIOTIS, P., GEORGOPOULOS, A. Y PRIGNITZ, S. (2015). “ACCURATE 3D SCANNING OF DAMAGED ANCIENT GREEK INSCRIPTIONS FOR REVEALING WEATHERED LETTERS”, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5-W4(5W4): 237-243. https://doi.org/10.5194/ISPRSARCHIVES-XL-5-W4-237-2015.
  • PARK, J. Y KAK, A.C. (2008). “3D modeling of optically challenging objects”, IEEE Transactions on Visualization and Computer Graphics, 14(2): 246-262. https://doi.org/10.1109/TVCG.2007.1069.
  • PATAY-Horváth, A. (2014). “The virtual 3D reconstruction of the east pediment of the temple of Zeus at Olympia an old puzzle of classical archaeology in the light of recent technologies”, Digital Applications in Archaeology and Cultural Heritage, 1(1):12-22. https://doi.org/10.1016/J.DAACH.2013.06.001.
  • RANTOSON, R., STOLZ, C., FOFI, D. Y MÉRIAUDEAU, F. (2010). “3D reconstruction of transparent objects exploiting surface fluorescence caused by UV irradiation”, Proceedings - International Conference on Image Processing, ICIP, 2965-2968. https://doi.org/10.1109/ICIP.2010.5653448.
  • RESHETOUSKI, I. Y IHRKE, I. (2013). “Mirrors in computer graphics, computer vision and time-of-flight imaging», Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8200 LNCS. https://doi.org/10.1007/978-3-642-44964-2_5/COVER.
  • RIQUELME, A.J., FERRER, B. Y MAS, D. (2017). “Use of high-quality and common commercial mirrors for scanning close-range surfaces using 3D laser scanners: A laboratory experiment”, Remote Sensing, 9(11): 1-13. https://doi.org/10.3390/rs9111152.
  • STERP MOGA, E., HERNÁNDEZ-MUÑOZ, Ó. Y SÁNCHEZ-ORTIZ, A. (2020). “Aplicación de fuentes de iluminación en modelos fotogramétricos para la diagnosis y restauración virtual de objetos en cera policromados”, Conservar Património [Preprint]. https://doi.org/10.14568/cp2020021.
  • TAKAHASHI, K. Y NOBUHARA, S. (2022). “Structure of Multiple Mirror System from Kaleidoscopic Projections of Single 3D Point”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9): 5602-5617. https://doi.org/10.1109/TPAMI.2021.3070347.
  • TARINI, M., LENSCH, H.P.A., GOESELE, M. Y SEIDEL, H.P. (2005). “3D acquisition of mirroring objects using striped patterns”, Graphical Models, 67(4): 233-259. https://doi.org/10.1016/j.gmod.2004.11.002.
  • VALINASAB, B., RUKOSUYEV, M., LEE, J., KO, J. Y JUN, M.B.G. et al. (2015) “Improvement of Optical 3D Scanner Performance Using Atomization-Based Spray Coating”, Journal of the Korean Society of Manufacturing Technology Engineers, 24(1): 23-30. https://doi.org/10.7735/KSMTE.2015.24.1.023.