Variabilidad del comportamiento microbiano: Consecuencias en la vida útil de los alimentos

  1. Gonzalo García de Fernando Minguillón
Revista:
Anales de la Real Academia de Ciencias Veterinarias

Año de publicación: 2022

Volumen: 30

Número: 30

Páginas: 113-130

Tipo: Artículo

Referencias bibliográficas

  • Aguirre J.S., Pin C., Rodríguez M.R., García de Fernando G.D. (2009). Analysis of the variability in the number of viable bacte-ria after mild heat treatment of food. Appl. Environ. Microbiol., 75: 6992-6997.
  • Aguirre J.S., Rodríguez M.R., García de Fernando G.D. (2011a). Effects of electron beam irradiation on variability of the number of survivors and on duration of lag phase of four food-borne or-ganisms. Int. J. Food Microbiol. 149: 236-246.
  • Aguirre, J.S., Rodríguez, M.R, García de Fernando, G.D. (2011b). Variabilidad de la inactivación microbiana y de la fase de latencia de microorganismos supervivientes a tratamientos conservantes de los alimentos. En: Productos cárnicos para el si-glo XXI. Seguros, nutritivos y saludables. Ordóñez, J.A., Córdo-ba, J.J. y Ventanas, J. (eds.). ISBN: 978-84-7723-949-9. Universidad de Extremadura. pp. 215-220.
  • Aguirre, J., Ordóñez, J.A., García de Fernando, G.D. (2012). A comparison of the effects of E-beam irradiation and heat treat-ment on the variability of Bacillus cereus inactivation and lag phase duration of surviving cells. Int. J. Food Microbiol. 153: 444–452.
  • Aguirre, J., González, A., Özçelik, N., Rodríguez, M.R. y García de Fernando, G.D. (2013). Modeling the Listeria innocua micro-population lag phase and its variability. Int. J. Food Microbiol., 164: 60-69.
  • Alvarenga, V.O., Brancini, G.T.P., Silva, E.K., da Pia, A.K.R., Campagnollo, F.B., Braga, G.U.L., Hubinger, M.D., Sant’Ana, A.S. (2018). Survival variability of 12 strains of Bacillus cereus yielded to spray drying of whole milk. Int. J. Food Microbiol., 286: 80-89.
  • Aspridou, Z., Koutsoumanis, K. (2020). Variability in microbial inactivation: From deterministic Bigelow model to probability 129 distribution of single cell inactivation times. Food Res. Int., 137: 1-6.
  • Baranyi J. 2002. Stochastic modelling of bacterial lag phase. Int. J. Food Microbiol., 73, 203-206.
  • Baranyi J, Pin, C. 1999. Estimating bacterial growth parameters by means of detection times. Appl. Environ. Microbiol., 65, 732-736.
  • D'Arrigo M., Garcia de Fernando G.D., Velasco de Diego R., Ordonez J.A., George S.M., Pin C. (2006). Indirect measurement of the lag time distribution of single cells of Listeria innocua in food. Appl. Environ. Microbiol. 72, 2533-2538.
  • Delignette, M.L., Rosso, L. (2000). Biological variability and exposure assessment. Int. J. Food Microbiol. 58: 203-212.
  • Koustoumanis, K. y Lianou, A. (2013). Stochasticity in colonial growth dynamics of individual bacterial cells. Appl. Environ. Mi-crobiol. 79 (7): 2294-2301.
  • Lianou A., Koutsoumanis, K. 2006. Strain variability of the behavior of foodborne bacterial pathogens: A review. Int. J. Food Microbiol., 167, 310-321.
  • Pelleg M. (2006) Isothermal microbial heat inactivation. In: Ad-vanced quantitative microbiology for foods and byosistems. Mo-dels for predicting growth and inactivation. Chapter 1, pp. 1-46. CRC Press, 6000 Broken Sound Parkway NW, Boca Raton, Flo-rida 33487-2742, 417 pp. (ISBN 0-8493-3645-4).
  • Pin C., Baranyi J. 2008. Single-cell and population lag times as a function of cell age. Appl. Environ. Microbiol., 74, 2534-2536.
  • Rodríguez, M.R., Aguirre, J., Lianou, A. Parra-Flores, J., García de Fernando, G.D. (2016). Analysis of the variability in micro-bial inactivation by acid treatments. LWT - Food Science and Te-chnology 66: 3659-377