Role of Glucan-Derived Polymers in the Pathogenic Fungus Candida albicans

  1. Daniel Prieto 1
  2. Elvira Román 1
  3. Rebeca Alonso-Monge 1
  4. Jesús Pla 1
  1. 1 Departamento de Microbiología y Parasitología, Universidad Complutense de Madrid, Madrid, Spain
Libro:
Extracellular Sugar-Based Biopolymers Matrices

ISSN: 2211-0593 2211-0607

ISBN: 9783030129187 9783030129194

Año de publicación: 2019

Páginas: 393-407

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-030-12919-4_9 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

The cell wall is one of the most important structures to every fungi. Candida albicans is the most important fungal pathogen leading to superficial but also invasive infections which are frequently life-threatening. The C. albicans cell wall is composed of different polysaccharides, mainly mannan, chitin, and glucan. Glucans (β-(1,3) and β-(1,6)) differ in abundance among the different cellular morphologies (yeast or hypha) of this fungus but are essential to maintain the morphology of the cells and to provide protection against external injuries and as an anchoring scaffold to other components of the wall. In C. albicans, glucan is normally hidden in the inner wall layer, but it may be exposed in response to different environmental conditions and/or drug treatments. Glucans may play a role in biofilm formation and, most importantly, modulate immune recognition by phagocytes via the Dectin-1 receptor, therefore influencing the outcome of colonization and infection of this important pathogen.

Referencias bibliográficas

  • Aimanianda V, Clavaud C, Simenel C, Fontaine T, Delepierre M, Latge JP (2009) Cell wall beta-(1,6)-glucan of Saccharomyces cerevisiae: structural characterization and in situ synthesis. J Biol Chem 284:13401–13412
  • Aimanianda V, Simenel C, Garnaud C, Clavaud C, Tada R, Barbin L, Mouyna I, Heddergott C, Popolo L, Ohya Y, Delepierre M, Latge JP (2017) The dual activity responsible for the elongation and branching of beta-(1,3)-glucan in the fungal cell wall. MBio 8(3). https://doi.org/10.1128/mBio.00619-17
  • Alonso-Monge R, Román E, Nombela C, Pla J (2006) The MAP kinase signal transduction network in Candida albicans. Microbiology 152:905–912
  • Arana DM, Prieto D, Román E, Nombela C, Alonso-Monge R, Pla J (2009) The role of the cell wall in fungal pathogenesis. Microb Biotechnol 2:308–320
  • Ben-Ami R, Garcia-Effron G, Lewis RE, Gamarra S, Leventakos K, Perlin DS, Kontoyiannis DP (2011) Fitness and virulence costs of Candida albicans FKS1 hot spot mutations associated with echinocandin resistance. J Infect Dis 204:626–635
  • Boone C, Sommer SS, Hensel A, Bussey H (1990) Yeast KRE genes provide evidence for a pathway of cell wall beta-glucan assembly. J Cell Biol 110:1833–1843
  • Boone C, Sdicu A, Laroche M, Bussey H (1991) Isolation from Candida albicans of a functional homolog of the Saccharomyces cerevisiae KRE1 gene, which is involved in cell wall beta-glucan synthesis. J Bacteriol 173:6859–6864
  • Brown GD, Gordon S (2001) Immune recognition. A new receptor for beta-glucans. Nature 413:36–37
  • Brown GD, Gordon S (2005) Immune recognition of fungal beta-glucans. Cell Microbiol 7:471–479
  • Brown GD, Herre J, Williams DL, Willment JA, Marshall AS, Gordon S (2003) Dectin-1 mediates the biological effects of beta-glucans. J Exp Med 197:1119–1124
  • Butler M, Day A (1998) Fungal melanins: a review. Can J Microbiol 44:1115–1136
  • Cabib E (2009) Two novel techniques for determination of polysaccharide cross-links show that Crh1p and Crh2p attach chitin to both beta(1-6)- and beta(1-3)glucan in the Saccharomyces cerevisiae cell wall. Eukaryot Cell 8:1626–1636
  • Cabib E, Arroyo J (2013) How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall. Nat Rev Microbiol 11:648–655
  • Cabib E, Blanco N, Grau C, Rodriguez-Pena JM, Arroyo J (2007) Crh1p and Crh2p are required for the cross-linking of chitin to beta(1-6)glucan in the Saccharomyces cerevisiae cell wall. Mol Microbiol 63:921–935
  • Cabib E, Blanco N, Arroyo J (2012) Presence of a large beta(1-3)glucan linked to chitin at the Saccharomyces cerevisiae mother-bud neck suggests involvement in localized growth control. Eukaryot Cell 11:388–400
  • Chaffin WL (2008) Candida albicans cell wall proteins. Microbiol Mol Biol Rev 72:495–544
  • Cheng SC, van de Veerdonk FL, Lenardon M, Stoffels M, Plantinga T, Smeekens S, Rizzetto L, Mukaremera L, Preechasuth K, Cavalieri D, Kanneganti TD, Van der Meer JW, Kullberg BJ, Joosten LA, Gow NA, Netea MG (2011) The dectin-1/inflammasome pathway is responsible for the induction of protective T-helper 17 responses that discriminate between yeasts and hyphae of Candida albicans. J Leukoc Biol 90:357–366
  • De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, Pappas PG, Maertens J, Lortholary O, Kauffman CA, Denning DW, Patterson TF, Maschmeyer G, Bille J, Dismukes WE, Herbrecht R, Hope WW, Kibbler CC, Kullberg BJ, Marr KA, Munoz P, Odds FC, Perfect JR, Restrepo A, Ruhnke M, Segal BH, Sobel JD, Sorrell TC, Viscoli C, Wingard JR, Zaoutis T, Bennett JE, European Organization for R, Treatment of Cancer/Invasive Fungal Infections Cooperative G, National Institute of A, Infectious Diseases Mycoses Study Group Consensus G (2008) Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis 46:1813–1821
  • Douglas CM, Foor F, Marrinan JA, Morin N, Nielsen JB, Dahl AM, Mazur P, Baginsky W, Li W, el-Sherbeini M (1994) The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-beta-D-glucan synthase. Proc Natl Acad Sci U S A 91:12907–12911
  • Douglas CM, D’Ippolito JA, Shei GJ, Meinz M, Onishi J, Marrinan JA, Li W, Abruzzo GK, Flattery A, Bartizal K, Mitchell A, Kurtz MB (1997) Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother 41:2471–2479
  • Ernst JF, Pla J (2011) Signaling the glycoshield: maintenance of the Candida albicans cell wall. Int J Med Microbiol 301:378–383
  • Erwig LP, Gow NA (2016) Interactions of fungal pathogens with phagocytes. Nat Rev Microbiol 14:163–176
  • Fontaine T, Simenel C, Dubreucq G, Adam O, Delepierre M, Lemoine J, Vorgias CE, Diaquin M, Latge JP (2000) Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J Biol Chem 275:27594–27607
  • Fonzi WA (1999) PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of beta-1,3- and beta-1,6-glucans. J Bacteriol 181:7070–7079
  • Free SJ (2013) Fungal cell wall organization and biosynthesis. Adv Genet 81:33–82
  • Frost DJ, Brandt K, Capobianco J, Goldman R (1994) Characterization of (1,3)-beta-glucan synthase in Candida albicans: microsomal assay from the yeast or mycelial morphological forms and a permeabilized whole-cell assay. Microbiology 140:2239–2246
  • Fu C, Tanaka A, Free SJ (2014) Neurospora crassa 1,3-alpha-glucan synthase, AGS-1, is required for cell wall biosynthesis during macroconidia development. Microbiology 160:1618–1627
  • Galan-Diez M, Arana DM, Serrano-Gomez D, Kremer L, Casasnovas JM, Ortega M, Cuesta-Dominguez A, Corbi AL, Pla J, Fernandez-Ruiz E (2010) Candida albicans beta-glucan exposure is controlled by the fungal CEK1-mediated mitogen-activated protein kinase pathway that modulates immune responses triggered through dectin-1. Infect Immun 78:1426–1436
  • Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM (2003) Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 197:1107–1117
  • Gantner BN, Simmons RM, Underhill DM (2005) Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J 24:1277–1286
  • Garcia-Effron G, Park S, Perlin DS (2009) Correlating echinocandin MIC and kinetic inhibition of fks1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints. Antimicrob Agents Chemother 53:112–122
  • Goldman RC, Sullivan PA, Zakula D, Capobianco JO (1995) Kinetics of beta-1,3 glucan interaction at the donor and acceptor sites of the fungal glucosyltransferase encoded by the BGL2 gene. Eur J Biochem 227:372–378
  • Gow NA, Hube B (2012) Importance of the Candida albicans cell wall during commensalism and infection. Curr Opin Microbiol 15:406–412
  • Hall RA (2015) Dressed to impress: impact of environmental adaptation on the Candida albicans cell wall. Mol Microbiol 97:7–17
  • Hawser SP, Baillie GS, Douglas LJ (1998) Production of extracellular matrix by Candida albicans biofilms. J Med Microbiol 47:253–256
  • Herrero AB, Magnelli P, Mansour MK, Levitz SM, Bussey H, Abeijon C (2004) KRE5 gene null mutant strains of Candida albicans are avirulent and have altered cell wall composition and hypha formation properties. Eukaryot Cell 3:1423–1432
  • Hopke A, Nicke N, Hidu EE, Degani G, Popolo L, Wheeler RT (2016) Neutrophil attack triggers extracellular trap-dependent Candida cell wall remodeling and altered immune recognition. PLoS Pathog 12(5):e1005644
  • Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, Brown J, Becker CA, Fleshner PR, Dubinsky M, Rotter JI, Wang HL, McGovern DP, Brown GD, Underhill DM (2012) Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 336:1314–1317
  • Joly S, Ma N, Sadler JJ, Soll DR, Cassel SL, Sutterwala FS (2009) Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J Immunol 183:3578–3581
  • Jouault T, Sarazin A, Martinez-Esparza M, Fradin C, Sendid B, Poulain D (2009) Host responses to a versatile commensal: PAMPs and PRRs interplay leading to tolerance or infection by Candida albicans. Cell Microbiol 11:1007–1015
  • Kanetsuna F, Carbonell LM, Gil F, Azuma I (1974) Chemical and ultrastructural studies on the cell walls of the yeast-like and mycelial forms of Histoplasma capsulatum. Mycopathol Mycol Appl 54:1–13
  • Kapteyn JC, Montijn RC, Vink E, de la Cruz J, Llobell A, Douwes JE, Shimoi H, Lipke PN, Klis FM (1996) Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked beta-1,3−/beta-1,6-glucan heteropolymer. Glycobiology 6:337–345
  • Karkowska-Kuleta J, Kozik A (2015) Cell wall proteome of pathogenic fungi. Acta Biochim Pol 62:339–351
  • Klis FM, Boorsma A, de Groot PW (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23:185–202
  • Klis FM, Sosinska GJ, de Groot PW, Brul S (2009) Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence. FEMS Yeast Res 9:1013–1028
  • Kollár R, Petráková E, Ashwell G, Robbins PW, Cabib E (1995) Architecture of the yeast cell wall: the linkage between chitin and ß (1-3)-glucan. J Biol Chem 3:1170–1178
  • Kollar R, Reinhold BB, Petrakova E, Yeh HJ, Ashwell G, Drgonova J, Kapteyn JC, Klis FM, Cabib E (1997) Architecture of the yeast cell wall. Beta(1–>6)-glucan interconnects mannoprotein, beta(1–>)3-glucan, and chitin. J Biol Chem 272:17762–17775
  • Kurita T, Noda Y, Takagi T, Osumi M, Yoda K (2011) Kre6 protein essential for yeast cell wall beta-1,6-glucan synthesis accumulates at sites of polarized growth. J Biol Chem 286:7429–7438
  • Kurtz MB, Douglas CM (1997) Lipopeptide inhibitors of fungal glucan synthase. J Med Vet Mycol 35:79–86
  • Laroche C, Michaud P (2007) New developments and prospective applications for beta (1,3) glucans. Recent Pat Biotechnol 1:59–73
  • Latge JP, Beauvais A (2014) Functional duality of the cell wall. Curr Opin Microbiol 20:111–117
  • Leibundgut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, Schweighoffer E, Tybulewicz V, Brown GD, Ruland J, Reis e S (2007) Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 8:630–638
  • Lenardon MD, Munro CA, Gow NA (2010) Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol 13:416–423
  • Lesage G, Bussey H (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:317–343
  • Liu H (2001) Transcriptional control of dimorphism in Candida albicans. Curr Opin Microbiol 4:728–735
  • Lowman DW, Greene RR, Bearden DW, Kruppa MD, Pottier M, Monteiro MA, Soldatov DV, Ensley HE, Cheng SC, Netea MG, Williams DL (2014) Novel structural features in Candida albicans hyphal glucan provide a basis for differential innate immune recognition of hyphae versus yeast. J Biol Chem 289:3432–3443
  • Maddi A, Free SJ (2010) alpha-1,6-Mannosylation of N-linked oligosaccharide present on cell wall proteins is required for their incorporation into the cell wall in the filamentous fungus Neurospora crassa. Eukaryot Cell 9:1766–1775
  • Marion CL, Rappleye CA, Engle JT, Goldman WE (2006) An alpha-(1,4)-amylase is essential for alpha-(1,3)-glucan production and virulence in Histoplasma capsulatum. Mol Microbiol 62:970–983
  • Maubon D, Park S, Tanguy M, Huerre M, Schmitt C, Prevost MC, Perlin DS, Latge JP, Beauvais A (2006) AGS3, an alpha(1-3)glucan synthase gene family member of Aspergillus fumigatus, modulates mycelium growth in the lung of experimentally infected mice. Fungal Genet Biol 43:366–375
  • Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4:119–128
  • Mazur P, Baginsky W (1996) In vitro activity of 1,3-beta-D-glucan synthase requires the GTP- binding protein Rho1. J Biol Chem 271:14604–14609
  • Mikulska M, Furfaro E, Viscoli C (2015) Non-cultural methods for the diagnosis of invasive fungal disease. Expert Rev Anti-Infect Ther 13:103–117
  • Mitchell AP (1998) Dimorphism and virulence in Candida albicans. Curr Opin Microbiol 1:687–692
  • Mitchell KF, Zarnowski R, Andes DR (2016) Fungal Super Glue: The Biofilm Matrix and Its Composition, Assembly, and Functions. PLoS Pathog 12(9):e1005828
  • Mrsa V, Klebl F, Tanner W (1993) Purification and characterization of the Saccharomyces cerevisiae BGL2 gene product, a cell wall endo-ß-1,3-glucanase. J Bacteriol 175:2102–2106
  • Muhlschlegel FA, Fonzi WA (1997) PHR2 of Candida albicans encodes a functional homolog of the pH-regulated gene PHR1 with an inverted pattern of pH-dependent expression. Mol Cell Biol 17:5960–5967
  • Navarro-García F, Sánchez M, Nombela C, Pla J (2001) Virulence genes in the pathogenic yeast Candida albicans. FEMS Microbiol Rev 25:245–268
  • Nett J, Lincoln L, Marchillo K, Massey R, Holoyda K, Hoff B, VanHandel M, Andes D (2007) Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother 51:510–520
  • Nett JE, Crawford K, Marchillo K, Andes DR (2010a) Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene. Antimicrob Agents Chemother 54:3505–3508
  • Nett JE, Sanchez H, Cain MT, Andes DR (2010b) Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. J Infect Dis 202:171–175
  • Nett JE, Zarnowski R, Cabezas-Olcoz J, Brooks EG, Bernhardt J, Marchillo K, Mosher DF, Andes DR (2015) Host contributions to construction of three device-associated Candida albicans biofilms. Infect Immun 83:4630–4638
  • Odds FC (1988) Candida and candidosis, vol 2. Baillière Tindall, London
  • Orlean P (2012) Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192:775–818
  • Pardini G, de Groot PW, Coste AT, Karababa M, Klis FM, de Koster CG, Sanglard D (2006) The CRH family coding for cell wall glycosylphosphatidylinositol proteins with a predicted transglycosidase domain affects cell wall organization and virulence of Candida albicans. J Biol Chem 281:40399–40411
  • Perlin DS (2011) Current perspectives on echinocandin class drugs. Future Microbiol 6:441–457
  • Peters BM, Jabra-Rizk MA, O’May GA, Costerton JW, Shirtliff ME (2012) Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev 25(1):193–213
  • Popolo L, Degani G, Camilloni C, Fonzi WA (2017) The PHR family: The role of extracellular transglycosylases in shaping Candida albicans cells. J Fungi (Basel) 3(4). https://doi.org/10.3390/jof3040059
  • Rappleye CA, Eissenberg LG, Goldman WE (2007) Histoplasma capsulatum alpha-(1,3)-glucan blocks innate immune recognition by the beta-glucan receptor. Proc Natl Acad Sci USA 104:1366–1370
  • Reese AJ, Yoneda A, Breger JA, Beauvais A, Liu H, Griffith CL, Bose I, Kim MJ, Skau C, Yang S, Sefko JA, Osumi M, Latge JP, Mylonakis E, Doering TL (2007) Loss of cell wall alpha(1-3) glucan affects Cryptococcus neoformans from ultrastructure to virulence. Mol Microbiol 63:1385–1398
  • Richard ML, Plaine A (2007) Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in Candida albicans. Eukaryot Cell 6:119–133
  • Roemer T, Bussey H (1991) Yeast beta-glucan synthesis: KRE6 encodes a predicted type II membrane protein required for glucan synthesis in vivo and for glucan synthase activity in vitro. Proc Natl Acad Sci USA 88:11295–11299
  • Roemer T, Delaney S, Bussey H (1993) SKN1 and KRE6 define a pair of functional homologs encoding putative membrane proteins involved in beta-glucan synthesis. Mol Cell Biol 13:4039–4048
  • Rubin-Bejerano I, Abeijon C, Magnelli P, Grisafi P, Fink GR (2007) Phagocytosis by human neutrophils is stimulated by a unique fungal cell wall component. Cell Host Microbe 2:55–67
  • Samar D, Kieler JB, Klutts JS (2015) Identification and deletion of Tft1, a predicted glycosyltransferase necessary for cell wall beta-1,3;1,4-glucan synthesis in Aspergillus fumigatus. PLoS One 10(2):e0117336
  • Saporito-Irwin SM, Birse CE, Sypherd PS, Fonzi WA (1995) PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis. Mol Cell Biol 15:601–613
  • Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL (2003) Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2:1053–1060
  • Saville SP, Lazzell AL, Chaturvedi AK, Monteagudo C, Lopez-Ribot JL (2008) Use of a genetically engineered strain to evaluate the pathogenic potential of yeast cell and filamentous forms during Candida albicans systemic infection in immunodeficient mice. Infect Immun 76:97–102
  • Shahinian S, Dijkgraaf GJ, Sdicu AM, Thomas DY, Jakob CA, Aebi M, Bussey H (1998) Involvement of protein N-glycosyl chain glucosylation and processing in the biosynthesis of cell wall beta-1,6-glucan of Saccharomyces cerevisiae. Genetics 149:843–856
  • Sherrington SL, Sorsby E, Mahtey N, Kumwenda P, Lenardon MD, Brown I, Ballou ER, MacCallum DM, Hall RA (2017) Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition. PLoS Pathog 13(5):e1006403
  • Shibata N, Suzuki A, Kobayashi H, Okawa Y (2007) Chemical structure of the cell-wall mannan of Candida albicans serotype A and its difference in yeast and hyphal forms. Biochem J 404:365–372
  • Tan Y, Ma S, Leonhard M, Moser D, Schneider-Stickler B (2018) beta-1,3-glucanase disrupts biofilm formation and increases antifungal susceptibility of Candida albicans DAY185. Int J Biol Macromol 108:942–946
  • Trinel PA, Borg-Von-Zepelin M, Lepage G, Jouault T, Mackenzie D, Poulain D (1993) Isolation and preliminary characterization of the 14- to 18-kilodalton Candida albicans antigen as a phospholipomannan containing beta-1,2-linked oligomannosides. Infect Immun 61:4398–4405
  • Wheeler RT, Fink GR (2006) A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog 2(4):e35
  • Wheeler RT, Kombe D, Agarwala SD, Fink GR (2008) Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment. PLoS Pathog 4(12):e1000227
  • Zarnowski R, Westler WM, Lacmbouh GA, Marita JM, Bothe JR, Bernhardt J, Lounes-Hadj Sahraoui A, Fontaine J, Sanchez H, Hatfield RD, Ntambi JM, Nett JE, Mitchell AP, Andes DR (2014) Novel entries in a fungal biofilm matrix encyclopedia. MBio 5(4):e01333-01314. https://doi.org/10.1128/mBio.01333-14