Characterization of the MAL2-positive compartment in oligodendrocytes

  1. Bello-Morales, Raquel 1
  2. de Marco, María C. 1
  3. Aranda, Juan Francisco 1
  4. Matesanz, Fuencisla 2
  5. Alcina, Antonio 2
  6. López-Guerrero, José Antonio 1
  1. 1 Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
  2. 2 Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18100 Granada, Spain
Revista:
Experimental Cell Research

ISSN: 0014-4827

Año de publicación: 2009

Volumen: 315

Número: 19

Páginas: 3453-3465

Tipo: Artículo

DOI: 10.1016/J.YEXCR.2009.08.003 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Experimental Cell Research

Resumen

Oligodendrocytes (OLs), the myelin-producing cells of the central nervous system, segregatedifferent surface subdomains at the plasma membrane as do other differentiated cells such aspolarized epithelia and neurons. To generate the complex membrane system that characterizesmyelinating OLs, large amounts of membrane proteins and lipids need to be synthesized andcorrectly targeted. In polarized epithelia, a considerable fraction of apical proteins are transportedby an indirect pathway involving a detour to the basolateral membrane before being internalizedand transported across the cell to the apical membrane by a process known as transcytosis. Theapical recycling endosome (ARE) or its equivalent, the subapical compartment (SAC), ofhepatocytes is an intracellular trafficking station involved in the transcytotic pathway. MAL2, anessential component of the machinery for basolateral-to-apical transcytosis, is an ARE/SACresident protein. Here, we show that, after differentiation, murine oligodendrocyte precursor andhuman oligodendroglioma derived cell lines, Oli-neu and HOG, respectively, up-regulate theexpression of MAL2 and accumulate it in an intracellular compartment, exhibiting a pericentrosomal localization. In these oligodendrocytic cell lines, this compartment shares some of themain features of the ARE/SAC, such as colocalization with Rab11a, sensitivity to disruption of themicrotubule cytoskeleton with nocodazole, and lack of internalized transferrin. Therefore, we suggest that the MAL2-positive compartment in oligodendrocytic cells could be a structure analogous to the ARE/SAC and might have an important role in the sorting of proteins and lipids for myelin assembly during oligodendrocyte differentiation

Referencias bibliográficas

  • Gielen, (2006), Glia, 54, pp. 499, 10.1002/glia.20406
  • Trapp, (1997), J. Cell Biol., 137, pp. 459, 10.1083/jcb.137.2.459
  • de Vries, (1998), Mol. Biol. Cell, 9, pp. 599, 10.1091/mbc.9.3.599
  • de Vries, (2000), Glycoconj. J., 17, pp. 181, 10.1023/A:1026533021994
  • Niemann, (1999), Ann. N. Y. Acad. Sci., 883, pp. 254, 10.1111/j.1749-6632.1999.tb08587.x
  • Simons, (2000), J. Cell Biol., 151, pp. 143, 10.1083/jcb.151.1.143
  • Kroepfl, (2001), J. Neurochem., 77, pp. 1301, 10.1046/j.1471-4159.2001.00343.x
  • Kramer, (2001), Microsc. Res. Tech., 52, pp. 656, 10.1002/jemt.1050
  • Alonso, (1987), Proc. Natl. Acad. Sci. U. S. A., 84, pp. 1997, 10.1073/pnas.84.7.1997
  • Perez, (1997), Biochem. Biophys. Res. Commun., 232, pp. 618, 10.1006/bbrc.1997.6338
  • Puertollano, (1999), J. Cell Biol., 145, pp. 141, 10.1083/jcb.145.1.141
  • Kim, (1995), J. Neurosci. Res., 42, pp. 413, 10.1002/jnr.490420316
  • Frank, (1998), J. Neurosci., 18, pp. 4901, 10.1523/JNEUROSCI.18-13-04901.1998
  • Frank, (2000), Prog. Neurobiol., 60, pp. 531, 10.1016/S0301-0082(99)00039-8
  • Wilson, (2001), Genomics, 76, pp. 81, 10.1006/geno.2001.6610
  • Marazuela, (2004), J. Histochem. Cytochem., 52, pp. 243, 10.1177/002215540405200212
  • de Marco, (2002), J. Cell Biol., 159, pp. 37, 10.1083/jcb.200206033
  • de Marco, (2006), Traffic (Copenhagen, Denmark), 7, pp. 61, 10.1111/j.1600-0854.2005.00361.x
  • Ihrke, (1998), J. Cell Biol., 141, pp. 115, 10.1083/jcb.141.1.115
  • Apodaca, (1994), J. Cell Biol., 125, pp. 67, 10.1083/jcb.125.1.67
  • Maier, (2003), J. Biol. Chem., 278, pp. 164, 10.1074/jbc.M208259200
  • Wustner, (2002), J. Biol. Chem., 277, pp. 30325, 10.1074/jbc.M202626200
  • Hoekstra, (2004), J. Cell Sci., 117, pp. 2183, 10.1242/jcs.01217
  • Bello-Morales, (2005), J. Neurovirol., 11, pp. 190, 10.1080/13550280590924179
  • Casanova, (1999), Mol. Biol. Cell, 10, pp. 47, 10.1091/mbc.10.1.47
  • Pereyra, (1988), Neurochem. Res., 13, pp. 583, 10.1007/BF00973301
  • Kramer, (1997), J. Biol. Chem., 272, pp. 8937, 10.1074/jbc.272.14.8937
  • Kim, (1999), J. Neurocytol., 28, pp. 281, 10.1023/A:1007001427597
  • van IJzendoorn, (1999), Trends Cell Biol., 9, pp. 144, 10.1016/S0962-8924(99)01512-3
  • Buntinx, (2003), J. Neurocytol., 32, pp. 25, 10.1023/A:1027324230923
  • de Arriba Zerpa, (2000), J. Neurosci. Res., 61, pp. 388, 10.1002/1097-4547(20000815)61:4<388::AID-JNR5>3.0.CO;2-Q
  • Marbet, (2006), Microsc. Res. Tech., 69, pp. 693, 10.1002/jemt.20337
  • van IJzendoorn, (1998), J. Cell Biol., 142, pp. 683, 10.1083/jcb.142.3.683
  • Schneider, (2005), J. Cell Sci., 118, pp. 2415, 10.1242/jcs.02365
  • Hayashi, (2004), Proc. Natl. Acad. Sci. U. S. A., 101, pp. 14949, 10.1073/pnas.0402890101
  • Bansal, (1994), Dev. Biol., 162, pp. 511, 10.1006/dbio.1994.1105
  • Gard, (1989), Development (Camb., England), 106, pp. 119, 10.1242/dev.106.1.119
  • Dubois-Dalcq, (1986), J. Cell Biol., 102, pp. 384, 10.1083/jcb.102.2.384
  • Schaeren-Wiemers, (2004), J. Cell Biol., 166, pp. 731, 10.1083/jcb.200406092
  • Jung, (1995), Eur. J. Neurosci., 7, pp. 1245, 10.1111/j.1460-9568.1995.tb01115.x
  • Post, (1992), Mol. Chem. Neuropathol., 16, pp. 303, 10.1007/BF03159976
  • Dukhovny, (2006), Mol. Membr. Biol., 23, pp. 245, 10.1080/09687860600601445
  • Gerlich, (2003), Cell, 112, pp. 751, 10.1016/S0092-8674(03)00189-2