The miR-199/DNM regulatory axis controls receptor-mediated endocytosis

  1. Aranda, Juan F. 12
  2. Canfrán-Duque, Alberto 12
  3. Goedeke, Leigh 12
  4. Suárez, Yajaira 12
  5. Fernández-Hernando, Carlos 12
  1. 1 Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
  2. 2 Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
Revista:
Journal of Cell Science

ISSN: 1477-9137 0021-9533

Año de publicación: 2015

Volumen: 128

Número: 17

Páginas: 3197–3209.

Tipo: Artículo

DOI: 10.1242/JCS.165233 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of Cell Science

Resumen

Small non-coding RNAs (microRNAs) are important regulators of gene expression that modulate many physiological processes; however, their role in regulating intracellular transport remains largely unknown. Intriguingly, we found that the dynamin (DNM) genes, a GTPase family of proteins responsible for endocytosis in eukaryotic cells, encode the conserved miR-199a and miR-199b family of miRNAs within their intronic sequences. Here, we demonstrate that miR-199a and miR-199b regulate endocytic transport by controlling the expression of important mediators of endocytosis such as clathrin heavy chain (CLTC), Rab5A, low-density lipoprotein receptor (LDLR) and caveolin-1 (Cav-1). Importantly, miR-199a-5p and miR-199b-5p overexpression markedly inhibits CLTC, Rab5A, LDLR and Cav-1 expression, thus preventing receptor-mediated endocytosis in human cell lines (Huh7 and HeLa). Of note, miR-199a-5p inhibition increases target gene expression and receptor-mediated endocytosis. Taken together, our work identifies a new mechanism by which microRNAs regulate intracellular trafficking. In particular, we demonstrate that the DNM, miR-199a-5p and miR-199b-5p genes act as a bifunctional locus that regulates endocytosis, thus adding an unexpected layer of complexity in the regulation of intracellular trafficking.

Información de financiación

Financiadores

  • National Institutes of Health United States
    • R01HL107953
    • R01HL106063
    • 1F31AG043318

Referencias bibliográficas

  • Ambros, (2004), Nature, 431, pp. 350, 10.1038/nature02871
  • Bartel, (2009), Cell, 136, pp. 215, 10.1016/j.cell.2009.01.002
  • Baurfend, (1995), Cold Spring Harb. Symp. Quant. Biol., 60, pp. 397, 10.1101/SQB.1995.060.01.044
  • Brown, (1986), Science, 232, pp. 34, 10.1126/science.3513311
  • Bucci, (1994), Proc. Natl. Acad. Sci. USA, 91, pp. 5061, 10.1073/pnas.91.11.5061
  • Bushati, (2007), Annu. Rev. Cell Dev. Biol., 23, pp. 175, 10.1146/annurev.cellbio.23.090506.123406
  • Callis, (2009), J. Clin. Invest., 119, pp. 2772, 10.1172/JCI36154
  • Calvo, (1998), J. Lipid Res., 39, pp. 777, 10.1016/S0022-2275(20)32566-9
  • Cao, (1998), Mol. Biol. Cell, 9, pp. 2595, 10.1091/mbc.9.9.2595
  • Cao, (2000), J. Cell Sci., 113, pp. 1993, 10.1242/jcs.113.11.1993
  • Chamorro-Jorganes, (2014), J. Cell Sci., 127, pp. 1169, 10.1242/jcs.130518
  • Chendrimada, (2007), Nature, 447, pp. 823, 10.1038/nature05841
  • Cheung, (2011), Oncogene, 30, pp. 3404, 10.1038/onc.2011.60
  • Cuk, (2013), PLoS ONE, 8, pp. e76729, 10.1371/journal.pone.0076729
  • da Costa Martins, (2010), Nat. Cell Biol., 12, pp. 1220, 10.1038/ncb2126
  • de Hoop, (1994), Neuron, 13, pp. 11, 10.1016/0896-6273(94)90456-1
  • Dorsey, (2007), J. Cell Sci., 120, pp. 2544, 10.1242/jcs.002493
  • Doyon, (2011), Nat. Cell Biol., 13, pp. 331, 10.1038/ncb2175
  • Duan, (2011), Mol. Cancer Ther., 10, pp. 1337, 10.1158/1535-7163.MCT-11-0096
  • Faire, (1992), Proc. Natl. Acad. Sci. USA, 89, pp. 8376, 10.1073/pnas.89.17.8376
  • Ferguson, (2012), Nat. Rev. Mol. Cell Biol., 13, pp. 75, 10.1038/nrm3266
  • Fernández-Rojo, (2012), Hepatology, 55, pp. 1574, 10.1002/hep.24810
  • Filipowicz, (2008), Nat. Rev. Genet., 9, pp. 102, 10.1038/nrg2290
  • Gan, (2002), Nat. Cell Biol., 4, pp. 605, 10.1038/ncb827
  • Girard, (2011), PLoS ONE, 6, pp. e29042, 10.1371/journal.pone.0029042
  • Goedeke, (2013), Mol. Cell. Biol., 33, pp. 2339, 10.1128/MCB.01714-12
  • Gray, (2003), Curr. Biol., 13, pp. 510, 10.1016/S0960-9822(03)00136-2
  • Gu, (2012), Int. J. Mol. Sci., 13, pp. 8449, 10.3390/ijms13078449
  • Gu, (2010), EMBO J., 29, pp. 3593, 10.1038/emboj.2010.249
  • Gu, (2011), J. Cell Biol., 193, pp. 61, 10.1083/jcb.201007003
  • Harding, (1983), J. Cell Biol., 97, pp. 329, 10.1083/jcb.97.2.329
  • Huang, (2008), Nat. Protoc., 4, pp. 44, 10.1038/nprot.2008.211
  • Iorio, (2012), Carcinogenesis, 33, pp. 1126, 10.1093/carcin/bgs140
  • Jones, (1998), Science, 279, pp. 573, 10.1126/science.279.5350.573
  • Kang, (2011), J. Cell Biol., 193, pp. 51, 10.1083/jcb.201012121
  • Killisch, (1992), J. Cell Sci., 103, pp. 211, 10.1242/jcs.103.1.211
  • Lee, (2003), Nature, 425, pp. 415, 10.1038/nature01957
  • Lee, (2014), Development, 141, pp. 1465, 10.1242/dev.104539
  • Lin, (2014), Am. J. Physiol. Renal Physiol., 306, pp. F53, 10.1152/ajprenal.00349.2013
  • Lino Cardenas, (2013), PLoS Genet., 9, pp. e1003291, 10.1371/journal.pgen.1003291
  • Liscum, (1989), J. Biol. Chem., 264, pp. 11796, 10.1016/S0021-9258(18)80136-3
  • Macia, (2006), Dev. Cell, 10, pp. 839, 10.1016/j.devcel.2006.04.002
  • McMahon, (2011), Nat. Rev. Mol. Cell Biol., 12, pp. 517, 10.1038/nrm3151
  • Mettlen, (2010), J. Cell Biol., 188, pp. 919, 10.1083/jcb.200908078
  • Moore, (1987), Science, 236, pp. 558, 10.1126/science.2883727
  • Mousley, (2012), Cell, 148, pp. 702, 10.1016/j.cell.2011.12.026
  • Nielsen, (1999), Nat. Cell Biol., 1, pp. 376, 10.1038/14075
  • Parachoniak, (2011), Dev. Cell, 20, pp. 751, 10.1016/j.devcel.2011.05.007
  • Pellinen, (2008), Dev. Cell, 15, pp. 371, 10.1016/j.devcel.2008.08.001
  • Pignot, (2013), Int. J. Cancer, 132, pp. 2479, 10.1002/ijc.27949
  • Ramsay, (2007), Cancer Res., 67, pp. 5275, 10.1158/0008-5472.CAN-07-0318
  • Rayner, (2010), Science, 328, pp. 1570, 10.1126/science.1189862
  • Rodriguez, (2004), Genome Res., 14, pp. 1902, 10.1101/gr.2722704
  • Roux, (2006), Nature, 441, pp. 528, 10.1038/nature04718
  • Saini, (2007), Proc. Natl. Acad. Sci. USA, 104, pp. 17719, 10.1073/pnas.0703890104
  • Sakurai, (2011), Cancer Res., 71, pp. 1680, 10.1158/0008-5472.CAN-10-2345
  • Scott, (2012), J. Biol. Chem., 287, pp. 14726, 10.1074/jbc.M111.326041
  • Semerdjieva, (2008), J. Cell Biol., 183, pp. 499, 10.1083/jcb.200806016
  • Serva, (2012), PLoS ONE, 7, pp. e52555, 10.1371/journal.pone.0052555
  • Shajahan, (2004), J. Biol. Chem., 279, pp. 20392, 10.1074/jbc.M308710200
  • Shatseva, (2011), J. Cell Sci., 124, pp. 2826, 10.1242/jcs.077529
  • Shen, (2010), Mol. Cancer, 9, pp. 227, 10.1186/1476-4598-9-227
  • Siegel, (2009), Nat. Cell Biol., 11, pp. 705, 10.1038/ncb1876
  • Simpson, (2004), J. Cell Sci., 117, pp. 6297, 10.1242/jcs.01560
  • Singh, (2003), Mol. Biol. Cell, 14, pp. 3254, 10.1091/mbc.E02-12-0809
  • Srivastava, (2013), PLoS ONE, 8, pp. e76994, 10.1371/journal.pone.0076994
  • Suarez, (2004), Cardiovasc. Res., 64, pp. 346, 10.1016/j.cardiores.2004.06.024
  • Szklarczyk, (2011), Nucleic Acids Res., 39, pp. D561, 10.1093/nar/gkq973
  • Takei, (1995), Nature, 374, pp. 186, 10.1038/374186a0
  • Takei, (1999), Nat. Cell Biol., 1, pp. 33, 10.1038/9004
  • Thomas, (2003), Genome Res., 13, pp. 2129, 10.1101/gr.772403
  • Tosoni, (2005), Cell, 123, pp. 875, 10.1016/j.cell.2005.10.021
  • Urrutia, (1997), Proc. Natl. Acad. Sci. USA, 94, pp. 377, 10.1073/pnas.94.2.377
  • van Rooij, (2009), Dev. Cell, 17, pp. 662, 10.1016/j.devcel.2009.10.013
  • Xu, (2012), Biochem. Biophys. Res. Commun., 423, pp. 826, 10.1016/j.bbrc.2012.06.048
  • Yang, (2008), Cancer Res., 68, pp. 425, 10.1158/0008-5472.CAN-07-2488
  • Yang, (2013), Mol. Cell. Biochem., 384, pp. 213, 10.1007/s11010-013-1800-x