microRNA regulation of lipoprotein metabolism

  1. Goedeke, Leigh 234
  2. Aranda, Juan F. 12
  3. Fernández-Hernando, Carlos 12
  1. 1 Vascular Biology and Therapeutics Program
  2. 2 Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
  3. 3 Vascular Biology and Therapeutics Program.
  4. 4 Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
Revista:
Current Opinion in Lipidology

ISSN: 0957-9672

Año de publicación: 2014

Volumen: 25

Número: 4

Páginas: 282-288

Tipo: Artículo

DOI: 10.1097/MOL.0000000000000094 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Current Opinion in Lipidology

Resumen

Purpose of review. The objective of this review article is to summarize the recent findings about the importance of microRNAs (miRNAs) in regulating lipoprotein metabolism. We highlight the recent findings that uncover the importance of miRNAs in controlling plasma LDL-cholesterol (LDL-C) levels.Recent findings. In 2013, several studies reported a number of miRNAs that regulate plasma LDL-C levels, including miR-30c. In this review article, we discuss those miRNAs that modulate LDL-C levels and lipoprotein secretion. We also discuss the numerous studies that demonstrate the critical role of miRNAs in governing the many facets of HDL metabolism, such as the ATP transporters, ABCA1, and ABCG1, and the scavenger receptor, SRB1.Summary. The understanding of how these miRNAs modulate lipoprotein metabolism promises to reveal new therapeutic targets to treat dyslipidemias and related cardiovascular disorders.

Referencias bibliográficas

  • Fernandez-Hernando, (2013), Arterioscler Thromb Vasc Biol, 33, pp. 178, 10.1161/ATVBAHA.112.300144
  • Fernandez-Hernando, (2011), Curr Opin Lipidol, 22, pp. 86, 10.1097/MOL.0b013e3283428d9d
  • Moore, (2010), Trends Endocrinol Metab, 21, pp. 699, 10.1016/j.tem.2010.08.008
  • Ambros, (2004), Nature, 431, pp. 350, 10.1038/nature02871
  • Bartel, (2004), Cell, 116, pp. 281, 10.1016/S0092-8674(04)00045-5
  • Bartel, (2009), Cell, 136, pp. 215, 10.1016/j.cell.2009.01.002
  • Filipowicz, (2008), enet, 9, pp. 102
  • Elmen, (2008), Nature, 452, pp. 896, 10.1038/nature06783
  • Esau, (2006), Cell Metab, 3, pp. 87, 10.1016/j.cmet.2006.01.005
  • Soh, (2013), Nat Med, 19, pp. 892, 10.1038/nm.3200
  • Jeon, (2013), Cell Metab, 18, pp. 51, 10.1016/j.cmet.2013.06.010
  • Yang, (2014), J Lipid Res, 55, pp. 226, 10.1194/jlr.M041335
  • de Aguiar Vallim, (2013), Circ Res, 112, pp. 1602, 10.1161/CIRCRESAHA.112.300648
  • Marquart, (2010), Proc Natl Acad Sci U S A, 107, pp. 12228, 10.1073/pnas.1005191107
  • Najafi-Shoushtari, (2010), Science, 328, pp. 1566, 10.1126/science.1189123
  • Ramirez, (2013), Circ Res, 112, pp. 1592, 10.1161/CIRCRESAHA.112.300626
  • Rayner, (2010), Science, 328, pp. 1570, 10.1126/science.1189862
  • Elmen, (2008), Nucleic Acids Res, 36, pp. 1153, 10.1093/nar/gkm1113
  • Krutzfeldt, (2005), Nature, 438, pp. 685, 10.1038/nature04303
  • Brown, (1997), Cell, 89, pp. 331, 10.1016/S0092-8674(00)80213-5
  • Horton, (2002), J Clin Invest, 109, pp. 1125, 10.1172/JCI0215593
  • Brown, (1974), Proc Natl Acad Sci U S A, 71, pp. 788, 10.1073/pnas.71.3.788
  • Brown, (1986), Science, 232, pp. 34, 10.1126/science.3513311
  • Yabe, (2002), Proc Natl Acad Sci U S A, 99, pp. 12753, 10.1073/pnas.162488899
  • Yang, (2002), Cell, 110, pp. 489, 10.1016/S0092-8674(02)00872-3
  • Bengoechea-Alonso, (2009), J Biol Chem, 284, pp. 5885, 10.1074/jbc.M807906200
  • Abifadel, (2003), Nat Genet, 34, pp. 154, 10.1038/ng1161
  • Maxwell, (2004), Proc Natl Acad Sci U S A, 101, pp. 7100, 10.1073/pnas.0402133101
  • Zelcer, (2009), Science, 325, pp. 100, 10.1126/science.1168974
  • Tontonoz, (2011), Cold Spring Harb Symp Quant Biol, 76, pp. 129, 10.1101/sqb.2011.76.010702
  • Bodzioch, (1999), Nat Genet, 22, pp. 347, 10.1038/11914
  • Brooks-Wilson, (1999), Nat Genet, 22, pp. 336, 10.1038/11905
  • Rust, (1999), Nat Genet, 22, pp. 352, 10.1038/11921
  • Adlakha, (2013), Cell Death Dis, 4, pp. e780, 10.1038/cddis.2013.301
  • Goedeke, (2013), Mol Cell Biol, 33, pp. 2339, 10.1128/MCB.01714-12
  • Kang, (2013), Arterioscler Thromb Vasc Biol, 33, pp. 2724, 10.1161/ATVBAHA.113.302004
  • Kim, (2012), Exp Neurol, 235, pp. 476, 10.1016/j.expneurol.2011.11.010
  • Ramirez, (2011), Arterioscler Thromb Vasc Biol, 31, pp. 2707, 10.1161/ATVBAHA.111.232066
  • Shirasaki, (2013), J Virol, 87, pp. 5270, 10.1128/JVI.03022-12
  • Wang, (2012), Circ Res, 111, pp. 967, 10.1161/CIRCRESAHA.112.266502
  • Rayner, (2011), Nature, 478, pp. 404, 10.1038/nature10486
  • Rottiers, (2013), Sci Transl Med, 5, pp. 212ra162, 10.1126/scitranslmed.3006840
  • Horie, (2010), Proc Natl Acad Sci U S A, 107, pp. 17321, 10.1073/pnas.1008499107
  • Horie, (2013), Nat Commun, 4, pp. 2883, 10.1038/ncomms3883
  • Miller, (2013), PloS One, 8, pp. e72324, 10.1371/journal.pone.0072324
  • Zhong, (2013), Cellular Signalling, 25, pp. 1429, 10.1016/j.cellsig.2013.03.003
  • Sun, (2012), FEBS Lett, 586, pp. 1472, 10.1016/j.febslet.2012.03.068
  • Hu, (2012), Mol Cell Biol, 32, pp. 5035, 10.1128/MCB.01002-12
  • Wang, (2013), Mol Cell Biol, 33, pp. 1956, 10.1128/MCB.01580-12