Dietary lipids modulate the expression of miR-107, an miRNA that regulates the circadian system

  1. Daimiel-Ruiz, Lidia 1
  2. Klett-Mingo, Mercedes 1
  3. Konstantinidou, Valentini 1
  4. Micó, Victor 1
  5. Aranda, Juan F. 4
  6. García, Belén 1
  7. Martínez-Botas, Javier 3
  8. Dávalos, Alberto 1
  9. Fernández-Hernando, Carlos 4
  10. Ordovás, Jose M. 12
  1. 1 Nutritional Genomics of Cardiovascular Disease and Obesity; IMDEA-Food Institute; CEI UAM+CSIC; Madrid Spain
  2. 2 Nutrition and Genomics Laboratory; JM-USDA Human Nutrition Research Center on Aging at Tufts University; Boston Massachusetts MA USA
  3. 3 Servicio de Bioquímica-Investigación; Hospital Universitario Ramón y Cajal; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS); Madrid Spain
  4. 4 Vascular Biology and Therapeutics Program; Yale University School of Medicine; New Haven, CT; USA; Integrative Cell Signaling and Neurobiology of Metabolism Program; Section of Comparative Medicine; Yale University School of Medicine; New Haven CT USA
Revista:
Molecular Nutrition & Food Research

ISSN: 1613-4125

Año de publicación: 2015

Volumen: 59

Número: 3

Páginas: 552-565

Tipo: Artículo

DOI: 10.1002/MNFR.201400616 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Molecular Nutrition & Food Research

Resumen

Scope. The increased prevalence of cardiovascular diseases (CVDs) has been hypothesized to be the result of an increased exposure to a host of atherogenic environmental factors, paramount among them being unhealthy dietary habits. Long-chain n-3 polyunsaturated fatty acids have been shown to have cardio protective effects, partially due to their ability to regulate gene expression. In this regard, increasing attention has been devoted to the role of miRNAs as regulators of multiple metabolic pathways whose deregulation has been associated with CVD risk.Methods and results. In this work, we investigated whether miRNA expression was regulated by docosahexanoic acid, conjugated linoleic acid, and cholesterol in Caco-2 cells. The modulated miRNAs, miR-107 was differentially expressed by all treatments and this modulation was independent of its hosting gene, PANK1, possibly through its own promoter, which contains binding sites for metabolically relevant transcription factors. Among the putative target genes of miR-107, we found some genes with key roles in circadian rhythm. Specifically, we demonstrated that binding of miR-107 to the CLOCK gene results in the deregulation of the circadian rhythm of the cells.Conclusion. Since chronodisruption has been linked to metabolic disorders such as type 2 diabetes, atherosclerosis, obesity, and CVD, our findings suggests that miR-107 could represent a new approach for pharmacological treatment of these diseases.

Información de financiación

Financiadores

  • Fundación Salud 2000
    • Investigación Clínica en Cardiometabolismo 2012
  • Instituo IMDEA Alimentación
    • Convocatoria de proyectos propios 2012-2014

Referencias bibliográficas

  • Mozaffarian, (2011), J. Am. Coll. Cardiol., 58, pp. 2047, 10.1016/j.jacc.2011.06.063
  • Delgado-Lista, (2012), Br. J. Nutr., 107, pp. S201, 10.1017/S0007114512001596
  • Harris, (2006), Curr. Opin. Lipidol., 17, pp. 387, 10.1097/01.mol.0000236363.63840.16
  • Jump, (2011), Curr. Opin. Clin. Nutr. Metab. Care, 14, pp. 115, 10.1097/MCO.0b013e328342991c
  • Micallef, (2009), Atherosclerosis, 204, pp. 476, 10.1016/j.atherosclerosis.2008.09.020
  • Serhan, (2010), Am. J. Pathol., 177, pp. 1576, 10.2353/ajpath.2010.100322
  • Dangardt, (2010), Atherosclerosis, 212, pp. 580, 10.1016/j.atherosclerosis.2010.06.046
  • Robinson, (2006), Am. J. Cardiol., 98, pp. 39i, 10.1016/j.amjcard.2005.12.026
  • Brouwer, (2009), Eur. Heart J., 30, pp. 820, 10.1093/eurheartj/ehp003
  • Kumar, (2011), Heart Rhythm, 8, pp. 562, 10.1016/j.hrthm.2010.12.017
  • Oleszczuk, (2012), Pol. J. Vet. Sci., 15, pp. 403, 10.2478/v10181-012-0063-x
  • Gebauer, (2011), Adv. Nutr., 2, pp. 332, 10.3945/an.111.000521
  • Yu, (2002), Biochim. Biophys. Acta, 1581, pp. 89, 10.1016/S1388-1981(02)00126-9
  • Valeille, (2004), Br. J. Nutr., 91, pp. 191, 10.1079/BJN20031057
  • Ringseis, (2008), Lipids, 43, pp. 913, 10.1007/s11745-008-3226-x
  • Iwakiri, (2002), Prostagland. Leukot. Essent. Fatty Acids, 67, pp. 435, 10.1054/plef.2002.0454
  • Stachowska, (2009), J. Physiol. Pharmacol., 60, pp. 77
  • Sonnino, (2013), Curr. Med. Chem., 20, pp. 4
  • Lasunción, (2006), Alim. Nutri, 13, pp. 97
  • Fernandez, (2004), Exp. Cell Res., 300, pp. 109, 10.1016/j.yexcr.2004.06.029
  • Fernandez, (2005), J. Lipid Res., 46, pp. 920, 10.1194/jlr.M400407-JLR200
  • Suarez, (2005), Biochim. Biophys. Acta, 1734, pp. 203, 10.1016/j.bbalip.2005.02.003
  • Thum, (2012), Cardiovasc. Res., 93, pp. 543, 10.1093/cvr/cvs085
  • Fernandez-Hernando, (2013), Arterioscler. Thromb. Vasc. Biol., 33, pp. 178, 10.1161/ATVBAHA.112.300144
  • Rayner, (2011), Nature, 478, pp. 404, 10.1038/nature10486
  • Rayner, (2010), Science, 328, pp. 1570, 10.1126/science.1189862
  • Kim, (2012), Exp. Neurol., 235, pp. 476, 10.1016/j.expneurol.2011.11.010
  • Ramirez, (2011), Arterioscler. Thromb. Vasc. Biol., 31, pp. 2707, 10.1161/ATVBAHA.111.232066
  • Ramirez, (2013), Circ. Res., 112, pp. 1592, 10.1161/CIRCRESAHA.112.300626
  • Esau, (2006), Cell Metab., 3, pp. 87, 10.1016/j.cmet.2006.01.005
  • Lanford, (2010), Science, 327, pp. 198, 10.1126/science.1178178
  • Bonauer, (2009), Science, 324, pp. 1710, 10.1126/science.1174381
  • Danielson, (2013), FASEB J., 27, pp. 1460, 10.1096/fj.12-221994
  • Cordes, (2009), Nature, 460, pp. 705, 10.1038/nature08195
  • Herrera, (2010), Diabetologia, 53, pp. 1099, 10.1007/s00125-010-1667-2
  • Trajkovski, (2011), Nature, 474, pp. 649, 10.1038/nature10112
  • Davis, (2008), Nutr. Rev., 66, pp. 477, 10.1111/j.1753-4887.2008.00080.x
  • Davidson, (2009), Carcinogenesis, 30, pp. 2077, 10.1093/carcin/bgp245
  • Parra, (2010), PloS ONE, 5, pp. e13005, 10.1371/journal.pone.0013005
  • Gil-Zamorano, (2014), J. Nutr., 144, pp. 575, 10.3945/jn.113.189050
  • Richardson, (2013), Am. J. Hum. Genet., 92, pp. 5, 10.1016/j.ajhg.2012.10.020
  • Levy, (1995), FASEB J., 9, pp. 626, 10.1096/fasebj.9.8.7768354
  • Field, (1987), J. Lipid Res., 28, pp. 1057, 10.1016/S0022-2275(20)38620-X
  • Corcoran, (2009), PloS ONE, 4, pp. e5279, 10.1371/journal.pone.0005279
  • Mandal, (2012), Carcinogenesis, 33, pp. 1897, 10.1093/carcin/bgs198
  • Farago, (2011), Lipids Health Dis., 10, pp. 173, 10.1186/1476-511X-10-173
  • Wilfred, (2007), Mol. Genet. Metab., 91, pp. 209, 10.1016/j.ymgme.2007.03.011
  • Foley, (2012), J. Leukoc. Biol., 92, pp. 521, 10.1189/jlb.0312160
  • Li, (2009), J. Lipid Res., 50, pp. 1756, 10.1194/jlr.M800509-JLR200
  • Bhatia, (2014), Biochim. Biophys. Acta, 1839, pp. 334, 10.1016/j.bbagrm.2014.02.009
  • Xue, (2014), Eur. J. Immunol., 44, pp. 673, 10.1002/eji.201343717
  • Xie, (2009), Diabetes, 58, pp. 1050, 10.2337/db08-1299
  • Leonardi, (2005), Prog. Lipid Res., 44, pp. 125, 10.1016/j.plipres.2005.04.001
  • Ramaswamy, (2004), J. Lipid Res., 45, pp. 17, 10.1194/jlr.M300279-JLR200
  • Leonardi, (2010), PloS ONE, 5, pp. e11107, 10.1371/journal.pone.0011107
  • Polster, (2010), Mol. Genet. Metab., 101, pp. 292, 10.1016/j.ymgme.2010.07.016
  • Daimiel, (2012), Biosci. Rep., 33, pp. 57, 10.1042/BSR20120095
  • Turek, (2005), Science, 308, pp. 1043, 10.1126/science.1108750
  • Lamia, (2008), Proc. Natl. Acad. Sci. USA, 105, pp. 15172, 10.1073/pnas.0806717105
  • Bass, (2012), Nature, 491, pp. 348, 10.1038/nature11704
  • Sherman, (2011), J. Cell. Mol. Med., 15, pp. 2745, 10.1111/j.1582-4934.2010.01160.x
  • Kohsaka, (2007), Cell Metab., 6, pp. 414, 10.1016/j.cmet.2007.09.006
  • Sherman, (2012), FASEB J., 26, pp. 3493, 10.1096/fj.12-208868
  • Arble, (2009), Obesity, 17, pp. 2100, 10.1038/oby.2009.264
  • Garaulet, (2013), Int. J. Obes., 37, pp. 604, 10.1038/ijo.2012.229
  • Cheng, (2007), Neuron, 54, pp. 813, 10.1016/j.neuron.2007.05.017
  • Nagel, (2009), FEBS J., 276, pp. 5447, 10.1111/j.1742-4658.2009.07229.x
  • Na, (2009), Exp. Mol. Med., 41, pp. 638, 10.3858/emm.2009.41.9.070