Beyond the gyrotropic motion: Dynamic C-state in vortex spin torque oscillators

  1. Wittrock, Steffen 1
  2. Talatchian, Philippe 1
  3. Romera, Miguel 1
  4. Menshawy, Samh 1
  5. Jotta Garcia, Mafalda 1
  6. Cyrille, Marie-Claire 4
  7. Ferreira, Ricardo 2
  8. Lebrun, Romain 1
  9. Bortolotti, Paolo 1
  10. Ebels, Ursula 3
  11. Grollier, Julie 1
  12. Cros, Vincent 1
  1. 1 Unité Mixte de Physique CNRS, Thales, Université Paris-Saclay 1 , 1 Avenue Augustin Fresnel, 91767 Palaiseau, France
  2. 2 International Iberian Nanotechnology Laboratory (INL) 3 , 471531 Braga, Portugal
  3. 3 Université Grenoble Alpes, CEA, INAC-SPINTEC, CNRS, SPINTEC 4 , 38000 Grenoble, France
  4. 4 Université Grenoble Alpes, CEA-LETI, MINATEC-Campus 2 , 38000 Grenoble, France
Revista:
Applied Physics Letters

ISSN: 0003-6951 1077-3118

Año de publicación: 2021

Volumen: 118

Número: 1

Tipo: Artículo

DOI: 10.1063/5.0029083 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Applied Physics Letters

Resumen

In the present study, we investigate a dynamical mode beyond the gyrotropic (G) motion of a magnetic vortex core in a confined magnetic disk of a nano-pillar spin torque nano-oscillator (STNO). It is characterized by the in-plane circular precession associated with a C-shaped magnetization distribution. We show a transition between G- and C-state modes, which is found to be stochastic in a current-controllable range. Supporting our experimental findings with micromagnetic simulations, we believe that the results provide further opportunities for the dynamic and stochastic control of STNOs, which could be interesting to be implemented, for example, in neuromorphic networks.

Información de financiación

Financiadores

Referencias bibliográficas

  • (2014), Nat. Mater., 13, pp. 11, 10.1038/nmat3823
  • (2017)
  • (2012), IEEE Trans. Magn., 48, pp. 1758, 10.1109/TMAG.2011.2173560
  • (2015), Sci. Rep., 4, pp. 5486, 10.1038/srep05486
  • (2017), Appl. Phys. Lett., 111, pp. 082401, 10.1063/1.4994892
  • (2017)
  • (2019), Phys. Rev. Appl., 11, pp. 014022, 10.1103/PhysRevApplied.11.014022
  • (2016), Nat. Nanotechnol., 11, pp. 360, 10.1038/nnano.2015.295
  • (2017), IEEE Trans. Magn., 53, pp. 1, 10.1109/TMAG.2017.2694847
  • (2017), Nature, 547, pp. 428, 10.1038/nature23011
  • (2018), Nature, 563, pp. 230, 10.1038/s41586-018-0632-y
  • (2007), Nat. Phys., 3, pp. 498, 10.1038/nphys619
  • (2010), Nat. Commun., 1, pp. 8, 10.1038/ncomms1006
  • (2002), Phys. Rev. B, 65, pp. 060402(R), 10.1103/PhysRevB.65.060402
  • (2005), Phys. Rev. B, 71, pp. 144407, 10.1103/PhysRevB.71.144407
  • (2005), Phys. Rev. Lett., 94, pp. 027205, 10.1103/PhysRevLett.94.027205
  • (2016), Phys. Rev. B, 93, pp. 184427, 10.1103/PhysRevB.93.184427
  • (1973), Phys. Rev. Lett., 30, pp. 230, 10.1103/PhysRevLett.30.230
  • (2008), Phys. Rev. Lett., 100, pp. 247201, 10.1103/PhysRevLett.100.247201
  • (2009), J. Appl. Phys., 105, pp. 013906, 10.1063/1.3054305
  • (2010), J. Appl. Phys., 108, pp. 123914, 10.1063/1.3524222
  • (2014), Appl. Phys. Lett., 105, pp. 052407, 10.1063/1.4892077
  • (2019), Sci. Rep., 9, pp. 15661, 10.1038/s41598-019-52236-z
  • (2016), Proc. IEEE, 104, pp. 2024, 10.1109/JPROC.2016.2597152
  • (2019), IEEE J. Explor. Solid-State Comput. Devices Circuits, 5, pp. 43, 10.1109/JXCDC.2019.2911046
  • (2009), IEEE Trans. Magn., 45, pp. 1875, 10.1109/TMAG.2008.2009935
  • (2019), Phys. Rev. B, 99, pp. 235135, 10.1103/PhysRevB.99.235135
  • (2020), Sci. Rep., 10, pp. 13116, 10.1038/s41598-020-70076-0
  • (2014), AIP Adv., 4, pp. 107133, 10.1063/1.4899186
  • (2008), J. Magn. Magn. Mater., 320, pp. 1190, 10.1016/j.jmmm.2007.12.019
  • (2012), Phys. Rev. B, 86, pp. 014402, 10.1103/PhysRevB.86.014402
  • (2011), Nat. Phys., 7, pp. 626, 10.1038/nphys1968