Beyond the gyrotropic motion: Dynamic C-state in vortex spin torque oscillators
- Wittrock, Steffen 1
- Talatchian, Philippe 1
- Romera, Miguel 1
- Menshawy, Samh 1
- Jotta Garcia, Mafalda 1
- Cyrille, Marie-Claire 4
- Ferreira, Ricardo 2
- Lebrun, Romain 1
- Bortolotti, Paolo 1
- Ebels, Ursula 3
- Grollier, Julie 1
- Cros, Vincent 1
- 1 Unité Mixte de Physique CNRS, Thales, Université Paris-Saclay 1 , 1 Avenue Augustin Fresnel, 91767 Palaiseau, France
- 2 International Iberian Nanotechnology Laboratory (INL) 3 , 471531 Braga, Portugal
- 3 Université Grenoble Alpes, CEA, INAC-SPINTEC, CNRS, SPINTEC 4 , 38000 Grenoble, France
- 4 Université Grenoble Alpes, CEA-LETI, MINATEC-Campus 2 , 38000 Grenoble, France
ISSN: 0003-6951, 1077-3118
Año de publicación: 2021
Volumen: 118
Número: 1
Tipo: Artículo
Otras publicaciones en: Applied Physics Letters
Resumen
In the present study, we investigate a dynamical mode beyond the gyrotropic (G) motion of a magnetic vortex core in a confined magnetic disk of a nano-pillar spin torque nano-oscillator (STNO). It is characterized by the in-plane circular precession associated with a C-shaped magnetization distribution. We show a transition between G- and C-state modes, which is found to be stochastic in a current-controllable range. Supporting our experimental findings with micromagnetic simulations, we believe that the results provide further opportunities for the dynamic and stochastic control of STNOs, which could be interesting to be implemented, for example, in neuromorphic networks.
Información de financiación
Financiadores
-
Agence Nationale de la Recherche
- ANR-18-CE24-0012
-
MICINN
- PGC2018-099422-A-I00
-
Labex FIRST-TF
- ANR-10-LABX-48-01
Referencias bibliográficas
- (2014), Nat. Mater., 13, pp. 11, 10.1038/nmat3823
- (2017)
- (2012), IEEE Trans. Magn., 48, pp. 1758, 10.1109/TMAG.2011.2173560
- (2015), Sci. Rep., 4, pp. 5486, 10.1038/srep05486
- (2017), Appl. Phys. Lett., 111, pp. 082401, 10.1063/1.4994892
- (2017)
- (2019), Phys. Rev. Appl., 11, pp. 014022, 10.1103/PhysRevApplied.11.014022
- (2016), Nat. Nanotechnol., 11, pp. 360, 10.1038/nnano.2015.295
- (2017), IEEE Trans. Magn., 53, pp. 1, 10.1109/TMAG.2017.2694847
- (2017), Nature, 547, pp. 428, 10.1038/nature23011
- (2018), Nature, 563, pp. 230, 10.1038/s41586-018-0632-y
- (2007), Nat. Phys., 3, pp. 498, 10.1038/nphys619
- (2010), Nat. Commun., 1, pp. 8, 10.1038/ncomms1006
- (2002), Phys. Rev. B, 65, pp. 060402(R), 10.1103/PhysRevB.65.060402
- (2005), Phys. Rev. B, 71, pp. 144407, 10.1103/PhysRevB.71.144407
- (2005), Phys. Rev. Lett., 94, pp. 027205, 10.1103/PhysRevLett.94.027205
- (2016), Phys. Rev. B, 93, pp. 184427, 10.1103/PhysRevB.93.184427
- (1973), Phys. Rev. Lett., 30, pp. 230, 10.1103/PhysRevLett.30.230
- (2008), Phys. Rev. Lett., 100, pp. 247201, 10.1103/PhysRevLett.100.247201
- (2009), J. Appl. Phys., 105, pp. 013906, 10.1063/1.3054305
- (2010), J. Appl. Phys., 108, pp. 123914, 10.1063/1.3524222
- (2014), Appl. Phys. Lett., 105, pp. 052407, 10.1063/1.4892077
- (2019), Sci. Rep., 9, pp. 15661, 10.1038/s41598-019-52236-z
- (2016), Proc. IEEE, 104, pp. 2024, 10.1109/JPROC.2016.2597152
- (2019), IEEE J. Explor. Solid-State Comput. Devices Circuits, 5, pp. 43, 10.1109/JXCDC.2019.2911046
- (2009), IEEE Trans. Magn., 45, pp. 1875, 10.1109/TMAG.2008.2009935
- (2019), Phys. Rev. B, 99, pp. 235135, 10.1103/PhysRevB.99.235135
- (2020), Sci. Rep., 10, pp. 13116, 10.1038/s41598-020-70076-0
- (2014), AIP Adv., 4, pp. 107133, 10.1063/1.4899186
- (2008), J. Magn. Magn. Mater., 320, pp. 1190, 10.1016/j.jmmm.2007.12.019
- (2012), Phys. Rev. B, 86, pp. 014402, 10.1103/PhysRevB.86.014402
- (2011), Nat. Phys., 7, pp. 626, 10.1038/nphys1968