Measures to assess a vaccination coverage in a stochastic SIV model with imperfect vaccine

  1. Gamboa Pérez, María 1
  2. López Herrero, María Jesús 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Actas:
International Society for Mathematical Biology (SMB'21)

Editorial: Society for Mathematical Biology

ISSN: 0022-2526

Ano de publicación: 2021

Tipo: Achega congreso

DOI: 10.1111/SAPM.12479 GOOGLE SCHOLAR lock_openDocta Complutense editor

Obxectivos de Desenvolvemento Sustentable

Resumo

A stochastic Markovian Susceptible-Infectious-Susceptible (SIS) model, with infection reintroduction is considered to represent the evolution of an epidemic process within a finite population. Disease is assumed to be a contact disease whose effect can be prevented by a vaccine. Before the epidemic process emerges, individuals got vaccinated to assure that the population is protected by herd immunity. In consequence, we formulate the model by adding a new compartment for vaccine protected individuals. The administered vaccine is not a perfect one and consequently it fails in a proportion of vaccinated individuals that are not protected against the vaccine preventable communicable disease. Hence, while the infectious process is in progress, the initial vaccine coverage declines and herd immunity could be lost. A threshold on the size of the vaccinated group is included as a warning measure on the protection of the community. Our objective is to define and study random characteristics, depending on the vaccination eligible group, that could advise health authorities when to launch a new vaccination program to recover the initial immunity level.

Referencias bibliográficas

  • Anderson RM, May RM.Infectious Diseases of Humans: Dynamics and Control. Oxford University Press; 1992.ISBN: 9780198540403.
  • Grassly NC, Fraser C. Mathematical models of infectious disease transmission.Nat Rev Microbiol.2008;6(6):477-487.https://doi.org/10.1038/nrmicro1845.
  • Kretzschmar M. Disease modeling for public health: added value, challenges, and institutional constraints.JPublic Health Policy. 2020;41:39-51.https://doi.org/10.1057/s41271-019-00206-0.
  • Diekmann O, Heesterbeek H, Britton T.Mathematical Tools for Understanding Infectious Disease Dynamics.Vol. 7.Princeton Series in Theoretical and Computational Biology. Princeton University Press; 2013.
  • Kermack WO, McKendrick AG. Contributions to the mathematical theory of epidemics.Bull Math Biol.1991;53:33-55.https://doi.org/10.1007/BF02464423.
  • Brauer F, van den Driessche P, Wu J.Lecture Notes in Mathematical Epidemiology. Berlin, Heidelberg:Springer; 2008.https://doi.org/10.1007/978-3-540-78911-6_2.
  • Tang L, Zhou Y, Wang L, et al. A review of multi-compartment infectious disease models.Int Stat Rev.2020;88:462-513.https://doi.org/10.1111/insr.12402.
  • Padmanabhan P, Seshaiyer P. Computational and mathematical methods to estimate the basic reproductionnumber and final size for single-stage and multistage progression disease models for Zika with preventativemeasures.ComputMathMethodsMed.2017;ArticleID4290825,17pages.https://doi.org/10.1155/2017/4290825GAMBOA and LOPEZ-HERRERO1437.
  • Sepulveda-Salcedo LS, Vasilieva O, Svinin M. Optimal control of dengue epidemic outbreaks under limitedresources.Stud Appl Math. 2020;144(2):185-212.https://doi.org/10.1111/sapm.12295.
  • Xiang Y, Jia Y, Chen L, Guo L, Shu B, Long E. COVID-19 epidemic prediction and the impact of public healthinterventions: a review of COVID-19 epidemic models.Infect Dis Model.2021;6:324-342.https://doi.org/10.1016/j.idm.2021.01.001.
  • FischerA,ChudejK,PeschHJ.Optimalvaccinationandcontrolstrategiesagainstdengue.MathMethodsApplSci. 2019;42:3496-3507.https://doi.org/10.1002/mma.5594.
  • Kumar D, Singh J, Al Qurashi M, Baleanu D. A new fractional SIRS-SI malaria disease model with applicationofvaccines,antimalarialdrugs, and spraying.AdvDifferEqu. 2019;ArticleNo.278:1-19.https://doi.org/10.1186/s13662-019-2199-9.
  • Olivares A, Staffetti E. Uncertainty quantification of a mathematicalmodel of COVID-19 transmission dynam-ics with mass vaccination strategy.Chaos Solitons Fractals. 2021;146:110895.https://doi.org/10.1016/j.chaos.2021.110895.
  • D’Onofrio A, Manfredi P, Poletti P. The interplay of public intervention and private choices in determiningthe outcome of vaccination programmes.PLoS One. 2012;7(10):e45653.https://doi.org/10.1371/journal.pone.0045653.
  • Grigorieva E, Khailov E, Korobeinikov A. Optimal control for an SEIR epidemic model with nonlinear inci-dence rate.Stud Appl Math. 2018;141:353-398.https://doi.org/10.1111/sapm.12227.
  • Rajaei A, Raeiszadeh M, Azimi V, Sharifi M. State estimation-based control of COVID-19 epidemic before andafter vaccine development.J Process Control. 2021;102:1-14.https://doi.org/10.1016/j.jprocont.2021.03.008.
  • Yang J, Martcheva M, Wang L. Global threshold dynamics of an SIVS model with waning vaccine-inducedimmunity and nonlinear incidence.Math Biosci. 2015;268:1-8.https://doi.org/10.1016/j.mbs.2015.07.003.
  • Dénes A, Székely L. Global dynamics of a mathematical model for the possible re-emergence of polio.MathBiosci. 2017;293:64-74.https://doi.org/10.1016/j.mbs.2017.08.010.
  • Li W, Zhang Q. Construction of positivity-preserving numerical method for stochastic SIVS epidemic model.Adv Differ Equ. 2019;25:1-19.https://doi.org/10.1186/s13662-019-1966-y.
  • Treibert S, Brunner H, Ehrhardt M. Compartment models for vaccine effectiveness and non-specific effectsfor tuberculosis.Math Biosci Eng. 2019;16(6):7250-7298.https://doi.org/10.3934/mbe.2019364.
  • Zhou X, Cui J. Modeling and stability analysis for a cholera model with vaccination.Math Methods Appl Sci.2011;34:1711-1724.https://doi.org/10.1002/mma.1477.
  • Cao B, Shan M, Zhang Q, Wang W. A stochastic SIS epidemic model with vaccination.PhysicaA. 2017;486:127-143.https://doi.org/10.1016/j.physa.2017.05.083.
  • Li XZ, Wang J, Ghosh M. Stability and bifurcation of an SIVS epidemic model with treatment and age ofvaccination.Appl Math Model. 2010;34:437-450.https://doi.org/10.1016/j.apm.2009.06.002.
  • Duijzer E, van Jaarsveld W, Wallinga J, Dekker R. The most efficient critical vaccination coverage and itsequivalence with maximizing the herd effect.Math Biosci. 2016;282:68-81.https://doi.org/10.1016/j.mbs.2016.09.017.
  • Li CL, Li CH. Dynamics of an epidemic model with imperfect vaccinations on complex networks.JPhysAMath Theor. 2020;53(46):464001.https://doi.org/10.1088/1751-8121/abb9ee.
  • Kouenkam JPI, Mbang J, Emvud Y. Global dynamics of a model of hepatitis B virus infection in a sub-SaharanAfrican rural area.Int J Biomath. 2020;13(06):2050054.https://doi.org/10.1142/S1793524520500540.
  • Buonomo B, Manfredi P, D’Onofrio A. Optimal time-profiles of public health intervention to shape volun-tary vaccination for childhood diseases.JMathBiol. 2019;78(4):1089-1113.https://doi.org/10.1007/s00285-018-1303-1.
  • van den Driessche P, Watmough J. Further notes on the basic reproduction number. In:Mathematical Epi-demiology. Lecture Notes in Mathematics, Vol 1945. Berlin, Heidelberg: Springer; 2008.https://doi.org/10.1007/978-3-540-78911-6_6.
  • Ross JV. Invasion of infectious diseases in finite homogeneous populations.J Theor Biol. 2011;289:83-89.https://doi.org/10.1016/j.jtbi.2011.08.035.
  • Artalejo JR, Lopez-Herrero MJ. On the exact measure of disease spread in stochastic epidemic models.BullMath Biol. 2013;75(7):1031-1050.https://doi.org/10.1007/s11538-013-9836-31438GAMBOA and LOPEZ-HERRERO.
  • Gamboa M, Lopez-Herrero MJ. Measuring infection transmission in a stochastic SIV model with infec-tionreintroductionandimperfectvaccine.ActaBiotheor.2020;68:395-420.https://doi.org/10.1007/s10441-019-09373-9.
  • Ma J. Estimating epidemic exponential growth rate and basic reproduction number.Infect Dis Model.2020;5:129-141.https://doi.org/10.1016/j.idm.2019.12.009.
  • Chong KC, Zhang C, Jia KM, et al. Targeting adults for supplementary immunization activities of measlescontrol in central China: a mathematical modelling study.Sci Rep. 2018;8:1-9.https://doi.org/10.1038/s41598-018-34461-0.
  • SaitoMM,EjimaK,KinoshitaR,NishiuraH.Assessingtheeffectivenessandcost-benefitoftest-and-vaccinatepolicy for supplementary vaccination against rubella with limited doses.Int J Environ Res Public Health.2018;15(4):572.https://doi.org/10.3390/ijerph15040572.
  • Liu J, Xia S.Computational Epidemiology: From Disease Transmission Modeling to Vaccination Decision Mak-ing.Health Information ScienceBerlin, Heidelberg: Springer; 2020.https://doi.org/10.1007/978-3-030-52109-7.
  • Verguet S, Johri M, Morris SK, Gauvreau CL, Jha P, Jit M. Controlling measles using supplemental immu-nization activities: a mathematical model to inform optimal policy.Vaccine. 2015;33(10):1291-1296.https://doi.org/10.1016/j.vaccine.2014.11.050.
  • Gamboa M, Lopez-Herrero MJ. Sensitivity analysis of a stochastic SIVS model with imperfect vaccine.Math-ematics. 2020;8:1136.https://doi.org/10.3390/math8071136.
  • Stone P, Wilkinson-Herbots H, Isham V. A stochastic model for head lice infections.JMathBiol.2008;56(6):743-763.https://doi.org/10.1007/s00285-007-0136-0.
  • Salmon DA, Dudley MZ, Glanz JM, Omer SB. Vaccine hesitancy: causes, consequences, and a call to action.Vaccine. 2015;33:D66-D71.https://doi.org/10.1016/j.vaccine.2015.09.035.
  • Paniz-Mondolfi AE, Tami A, Grillet ME, et al. Resurgence of vaccine-preventable diseases in Venezuela asa regional public health threat in the Americas.Emerg Infect Dis. 2019;25:625-632.https://doi.org/10.3201/eid2504.181305.
  • Paules CI, Marston HD, Fauci AS. Measles in 2019: going backward.N Engl J Med. 2019;380:2185-2187.https://doi.org/10.1056/NEJMp1905099.
  • Zalizniak V.Essentials of Scientific Computing: Numerical Methods for Science and Engineering. WoodheadPublishing; 2008. World Health Organization. Diphtheria vaccine: WHO position paper.Weekly Epidemiological Record.2017;92(31):417-36.
  • Sornbundit K, Triampo W, Modchang C. Mathematical modeling of diphtheria transmission in Thailand.Comput Biol Med. 2017;87:162-168.https://doi.org/10.1016/j.compbiomed.2017.05.031.
  • Latouche G.Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA-SIAM Series on Statisticsand Applied Probability Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics; 1999.
  • Gómez-Corral A, López-García M. Perturbation analysis in finite LD-QBD processes and applications to epi-demic models.NumerLinearAlgebraAppl. 2018;25(5):e2160.https://doi.org/10.1002/nla.2160.
  • Gómez-Corral A, López-García M, Lopez-Herrero MJ, Taipe D. On first-passage times and sojourn times infinite QBD processes and their applications in epidemics.Mathematics. 2020;8(10):1718.https://doi.org/10.3390/math8101718.
  • BallF,SirlD.EvaluationofvaccinationstrategiesforSIRepidemicsonrandomnetworksincorporatinghouse-hold structure.JMathBiol. 2018;76:483-530.https://doi.org/10.1007/s00285-017-1139-0.
  • Duan XC, Jung IH, Li XZ, Martcheva M. Dynamics and optimal control of an age-structured SIRVS epidemicmodel.Math Methods Appl Sci. 2020;43(7):4239-4256.https://doi.org/10.1002/mma.6190.
  • Fernández-Peralta R, Gómez-Corral A. A structured Markov chain model to investigate the effects of pre-exposure vaccines in tuberculosis control.J Theor Biol. 2021;509:110490.https://doi.org/10.1016/j.jtbi.2020.110490