Strategies to Improve the Freshness in Wines from Warm Areas

  1. Morata, Antonio 1
  2. Loira, Iris 1
  3. del Fresno, Juan Manuel 1
  4. Escott, Carlos 1
  5. Bañuelos, María Antonia 1
  6. Tesfaye, Wendu 1
  7. González, Carmen 1
  8. Palomero, Felipe 1
  9. Suárez Lepe, Jose Antonio 1
  1. 1 Universidad Politécnica de Madrid
    info

    Universidad Politécnica de Madrid

    Madrid, España

    ROR https://ror.org/03n6nwv02

Libro:
Advances in Grape and Wine Biotechnology

Editorial: IntechOpen

ISBN: 9781789846126 9781789846133

Año de publicación: 2019

Páginas: 133-143

Tipo: Capítulo de Libro

DOI: 10.5772/INTECHOPEN.86893 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

Trends in wine consumption are continuously changing. The latest in style is fresh wine with moderate alcohol content, high acidity, and primary aromas reminiscent of grapes, whereas certain fermentative volatiles may also influence the freshness of the wine. In addition, the effects of climate change on the composition of the grapes (high sugar content and low acidity) are adverse for the quality of the wine, also considering the microbiological stability. Herein, different strategies aiming at improving wine freshness are presented, and their performance in winemaking is discussed: among them, the addition of organic acids able to inhibit malolactic fermentation such as fumaric acid; the use of acidifying yeasts for alcoholic fermentation, such as Lachancea thermotolerans; and the selection of non-Saccharomyces yeasts with β-glucosidase activity in order to release terpene glycosides present in the must.

Referencias bibliográficas

  • Comuzzo P, Battistutta F. Acidification and pH control in red wines. In: Red Wine Technology. London, UK: Elsevier; 2019. pp. 17-34
  • Kontoudakis N, Esteruelas M, Fort F, Canals J, Zamora F. Use of unripe grapes harvested during cluster thinning as a method for reducing alcohol content and pH of wine. Australian Journal of Grape and Wine Research. 2011;17(2):230-238
  • Gardner DM, Zoecklein BW, Mallikarjunan K. Electronic nose analysis of cabernet sauvignon (Vitis vinifera L.) grape and wine volatile differences during cold soak and postfermentation. American Journal of Enology and Viticulture. 2011;62(1):81-90
  • Casassa LF, Bolcato EA, Sari SE. Chemical, chromatic, and sensory attributes of 6 red wines produced with prefermentative cold soak. Food Chemistry. 2015;174:110-118
  • Gómez-Míguez M, González-Miret ML, Heredia FJ. Evolution of colour and anthocyanin composition of Syrah wines elaborated with pre-fermentative cold maceration. Journal of Food Engineering. 2007;79(1):271-278
  • Maturano YP, Mestre MV, Esteve-Zarzoso B, Nally MC, Lerena MC, Toro ME, et al. Yeast population dynamics during prefermentative cold soak of cabernet sauvignon and Malbec wines. International Journal of Food Microbiology. 2015;199:23-32
  • Molina AM, Swiegers JH, Varela C, Pretorius IS, Agosin E. Influence of wine fermentation temperature on the synthesis of yeast-derived volatile aroma compounds. Applied Microbiology and Biotechnology. 2007;77(3):675-687
  • San-Juan F, Ferreira V, Cacho J, Escudero A. Quality and aromatic sensory descriptors (mainly fresh and dry fruit character) of Spanish red wines can be predicted from their aroma-active chemical composition. Journal of Agricultural and Food Chemistry. 2011;59(14):7916-7924
  • Culleré L, López R, Ferreira V. The instrumental analysis of aroma-active compounds for explaining the flavor of red wines. In: Red Wine Technology. London, UK: Elsevier; 2019. pp. 283-307
  • Ferreira V, San Juan F, Escudero A, Cullere L, Fernandez-Zurbano P, Saenz-Navajas MP, et al. Modeling quality of premium Spanish red wines from gas chromatography-olfactometry data. Journal of Agricultural and Food Chemistry. 2009;57(16):7490-7498
  • Ferreira V, Sáenz-Navajas M, Campo E, Herrero P, de la Fuente A, Fernández-Zurbano P. Sensory interactions between six common aroma vectors explain four main red wine aroma nuances. Food Chemistry. 2016;199:447-456
  • Falcao L, Lytra G, Darriet P, Barbe J. Identification of ethyl 2-hydroxy-4-methylpentanoate in red wines, a compound involved in blackberry aroma. Food Chemistry. 2012;132(1):230-236
  • Pineau B, Barbe J, Van Leeuwen C, Dubourdieu D. Examples of perceptive interactions involved in specific “red-” and “black-berry” aromas in red wines. Journal of Agricultural and Food Chemistry. 2009;57(9):3702-3708
  • Renault P, Coulon J, de Revel G, Barbe J, Bely M. Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is linked to specific esters enhancement. International Journal of Food Microbiology. 2015;207:40-48
  • Loira I, Vejarano R, Bañuelos M, Morata A, Tesfaye W, Uthurry C, et al. Influence of sequential fermentation with Torulaspora delbrueckii and Saccharomyces cerevisiae on wine quality. LWT-Food Science and Technology. 2014;59(2):915-922
  • Tao Y, Zhang L. Intensity prediction of typical aroma characters of cabernet sauvignon wine in Changli County (China). LWT-Food Science and Technology. 2010;43(10):1550-1556
  • Rojas V, Gil JV, Piñaga F, Manzanares P. Acetate ester formation in wine by mixed cultures in laboratory fermentations. International Journal of Food Microbiology. 2003;86(1-2):181-188
  • Kurita O. Increase of acetate ester-hydrolysing esterase activity in mixed cultures of Saccharomyces cerevisiae and Pichia anomala. Journal of Applied Microbiology. 2008;104(4):1051-1058
  • Domizio P, Romani C, Lencioni L, Comitini F, Gobbi M, Mannazzu I, et al. Outlining a future for non-Saccharomyces yeasts: Selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation. International Journal of Food Microbiology. 2011;147(3):170-180
  • Izquierdo Cañas PM, García-Romero E, Manso JMH, Fernández-González M. Influence of sequential inoculation of Wickerhamomyces anomalus and Saccharomyces cerevisiae in the quality of red wines. European Food Research and Technology. 2014;239(2):279-286
  • Padilla B, Gil J, Manzanares P. Challenges of the non-conventional yeast Wickerhamomyces anomalus in winemaking. Fermentation. 2018;4(3):68
  • Padilla B, Gil JV, Manzanares P. Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Frontiers in Microbiology. 2016;7:411
  • Romero-Cascales I, Fernández-Fernández JI, Ros-García JM, López-Roca JM, Gómez-Plaza E. Characterisation of the main enzymatic activities present in six commercial macerating enzymes and their effects on extracting colour during winemaking of Monastrell grapes. International Journal of Food Science and Technology. 2008;43(7):1295-1305
  • Whitener MEB, Carlin S, Jacobson D, Weighill D, Divol B, Conterno L, et al. Early fermentation volatile metabolite profile of non-Saccharomyces yeasts in red and white grape must: A targeted approach. LWT-Food Science and Technology. 2015;64(1):412-422
  • Rosi I, Vinella M, Domizio P. Characterization of β-glucosidase activity in yeasts of oenological origin. The Journal of Applied Bacteriology. 1994;77(5):519-527
  • Zott K, Thibon C, Bely M, Lonvaud-Funel A, Dubourdieu D, Masneuf-Pomarede I. The grape must non-Saccharomyces microbial community: Impact on volatile thiol release. International Journal of Food Microbiology. 2011;151(2):210-215
  • Varela C, Sengler F, Solomon M, Curtin C. Volatile flavour profile of reduced alcohol wines fermented with the non-conventional yeast species Metschnikowia pulcherrima and Saccharomyces uvarum. Food Chemistry. 2016;209:57-64
  • Zhang B, Shen J, Duan C, Yan G. Use of indigenous Hanseniaspora vineae and Metschnikowia pulcherrima co-fermentation with Saccharomyces cerevisiae to improve the aroma diversity of Vidal blanc icewine. Frontiers in Microbiology. 2018;9:2303
  • Ganga MA, Carriles P, Raynal C, Heras JM, Ortiz-Julien A, Dumont A. Vincular la Metschnikowia Pulcherrima y la Saccharomyces cerevisiae Para Una Máxima Revelación del Aroma en Vinos Blancos; 2014. Available from: http://www.lallemandwine.com/wp-content/uploads/2014/10/Flavia-Lee-el-documento.pdf
  • Barbosa C, Lage P, Esteves M, Chambel L, Mendes-Faia A, Mendes-Ferreira A. Molecular and phenotypic characterization of Metschnikowia pulcherrima strains from Douro wine region. Fermentation. 2018;4(1):8
  • Viana F, Belloch C, Vallés S, Manzanares P. Monitoring a mixed starter of Hanseniaspora vineae-Saccharomyces cerevisiae in natural must: Impact on 2-phenylethyl acetate production. International Journal of Food Microbiology. 2011;151(2):235-240
  • Martin V, Valera M, Medina K, Boido E, Carrau F. Oenological impact of the Hanseniaspora/Kloeckera yeast genus on wines—A review. Fermentation. 2018;4(3):76
  • Medina K, Boido E, Fariña L, Gioia O, Gomez M, Barquet M, et al. Increased flavour diversity of chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae. Food Chemistry. 2013;141(3):2513-2521
  • Martin V, Boido E, Giorello F, Mas A, Dellacassa E, Carrau F. Effect of yeast assimilable nitrogen on the synthesis of phenolic aroma compounds by Hanseniaspora vineae strains. Yeast. 2016;33(7):323-328
  • Martin V, Giorello F, Fariña L, Minteguiaga M, Salzman V, Boido E, et al. De novo synthesis of benzenoid compounds by the yeast Hanseniaspora vineae increases the flavor diversity of wines. Journal of Agricultural and Food Chemistry. 2016;64(22):4574-4583
  • Hu K, Jin G, Xu Y, Tao Y. Wine aroma response to different participation of selected Hanseniaspora uvarum in mixed fermentation with Saccharomyces cerevisiae. Food Research International. 2018;108:119-127
  • Yéramian N, Chaya C, Suárez Lepe JA. L-(−)-malic acid production by Saccharomyces spp. during the alcoholic fermentation of wine. Journal of Agricultural and Food Chemistry. 2007;55(3):912-919
  • Comitini F, Gobbi M, Domizio P, Romani C, Lencioni L, Mannazzu I, et al. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiology. 2011;28(5):873-882
  • Morata A, Bañuelos MA, Vaquero C, Loira I, Cuerda R, Palomero F, et al. Lachancea thermotolerans as a tool to improve pH in red wines from warm regions. European Food Research and Technology. 2019;245(4):885-894
  • Domizio P, House JF, Joseph CML, Bisson LF, Bamforth CW. Lachancea thermotolerans as an alternative yeast for the production of beer. Journal of the Institute of Brewing. 2016;122(4):599-604
  • Callejo MJ, González C, Morata A. Use of non-Saccharomyces yeasts in bottle fermentation of aged beers. In: Kanauchi M, editor. Brewing Technology. Rijeka, Croatia: IntechOpen; 2017
  • Callejo MJ, Navas JG, Alba R, Escott C, Loira I, González MC, et al. Wort fermentation and beer conditioning with selected non-Saccharomyces yeasts in craft beers. European Food Research and Technology. 2019;245:1229-1238
  • Kapsopoulou K, Kapaklis A, Spyropoulos H. Growth and fermentation characteristics of a strain of the wine yeast Kluyveromyces thermotolerans isolated in Greece. World Journal of Microbiology and Biotechnology. 2005;21(8-9):1599-1602
  • Gobbi M, Comitini F, Domizio P, Romani C, Lencioni L, Mannazzu I, et al. Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: A strategy to enhance acidity and improve the overall quality of wine. Food Microbiology. 2013;33(2):271-281
  • Morata A, Loira I, Tesfaye W, Bañuelos M, González C, Suárez Lepe J. Lachancea thermotolerans applications in wine technology. Fermentation. 2018;4(3):53
  • Vanooteghem M. Use of Non-Saccharomyces Yeasts in the Brewing of Craft Beers; 2019
  • Banilas G, Sgouros G, Nisiotou A. Development of microsatellite markers for Lachancea thermotolerans typing and population structure of wine-associated isolates. Microbiological Research. 2016;193:1-10
  • Kapsopoulou K, Mourtzini A, Anthoulas M, Nerantzis E. Biological acidification during grape must fermentation using mixed cultures of Kluyveromyces thermotolerans and Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology. 2007;23(5):735-739
  • Morata A, Loira I, Suárez-Lepe JA. Influence of yeasts in wine colour. In: Morata A, Loira I, editors. Grape and Wine Biotechnology. Rijeka, Croatia: IntechOpen; 2016
  • Escott C, Morata A, Ricardo-da-Silva J, Callejo M, González M, Suarez-Lepe JA. Effect of Lachancea thermotolerans on the formation of polymeric pigments during sequential fermentation with Schizosaccharomyces pombe and Saccharomyces cerevisiae. Molecules. 2018;23(9):2353
  • White TJ, Bruns TD, Lee SB, Taylor JL. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR-Protocols and Applications—A Laboratory Manual. San Diego, CA, USA: Academic Press; 1990
  • Fleet GH. Wine yeasts for the future. FEMS Yeast Research. 2008;8(7):979-995
  • Suárez-Lepe JA, Morata A. New trends in yeast selection for winemaking. Trends in Food Science & Technology. 2012;23(1):39-50
  • Suárez-Lepe JA, Morata A. Levaduras Para Vinificación en Tinto. Madrid, Spain: AMV Ediciones; 2015
  • Morata A, Gómez-Cordovés MC, Colomo B, Suárez JA. Pyruvic acid and acetaldehyde production by different strains of Saccharomyces cerevisiae: Relationship with vitisin A and B formation in red wines. Journal of Agricultural and Food Chemistry. 2003;51(25):7402-7409
  • Morata A, Gómez-Cordovés MC, Calderón F, Suárez JA. Effects of pH, temperature and SO2 on the formation of pyranoanthocyanins during red wine fermentation with two species of Saccharomyces. International Journal of Food Microbiology. 2006;106:123-129
  • Morata A, González C, Suárez-Lepe JA. Formation of vinylphenolic pyranoanthocyanins by selected yeasts fermenting red grape musts supplemented with hydroxycinnamic acids. International Journal of Food Microbiology. 2007;116(1):144-152
  • Escott C, Del Fresno JM, Loira I, Morata A, Tesfaye W, González MC, et al. Formation of polymeric pigments in red wines through sequential fermentation of flavanol-enriched musts with non-Saccharomyces yeasts. Food Chemistry. 2018;239:975-983
  • Lambrechts MG, Pretorius IS. Yeast and its importance to wine aroma—A review. South African Journal of Enology and Viticulture. 2000;21:97-129
  • Swiegers JH, Bartowsky EJ, Henschke PA, Pretorius I. Yeast and bacterial modulation of wine aroma and flavour. Australian Journal of Grape and Wine Research. 2005;11(2):139-173
  • Palomero F, Morata A, Benito S, Calderón F, Suárez-Lepe JA. New genera of yeasts for over-lees aging of red wine. Food Chemistry. 2009;112(2):432-441
  • Loira I, Vejarano R, Morata A, Ricardo-da-Silva JM, Laureano O, González MC, et al. Effect of Saccharomyces strains on the quality of red wines aged on lees. Food Chemistry. 2013;139(1-4):1044-1051