Enhanced Production of Therapeutic Metabolites in Cork-Oak Somatic Embryos under Abiotic Stress Conditions
- López, Beatriz Pintos 1
- Manzanera, José Antonio 2
- Pérez-Urria, Elena 1
- Jiménez, Carlos 1
- Montoro, Alba 1
- Gomez-Garay, Arancha 1
- 1 Research Group FiVe-A, Plant Physiology Unit, Faculty of Biology, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
- 2 Research Group FiVe-A, College of Forestry and Natural Environment, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
ISSN: 2673-7140
Año de publicación: 2024
Volumen: 4
Número: 3
Páginas: 546-557
Tipo: Artículo
Otras publicaciones en: Stresses
Resumen
This study investigates the enhanced production of key therapeutic metabolites (ellagic acid, serotonin, and chlorogenic acid) in response to abiotic stress in in vitro cultures of Quercus suber somatic embryos. Findings indicate significant increases in metabolite levels under various stress conditions, highlighting the potential for commercial-scale production of these compounds, known for their antioxidant, anticancer, and anti-COVID-19 properties. Under osmotic/saline stress,ellagic acid production significantly increased, representing an 80% increase compared to control conditions. In embryos exposed to different stressors, serotonin accumulation showed a six-fold increase under smotic/saline stress. Although the elicitors used did not increase chlorogenic acid levels, exploring alternative stress types may enhance its production. This research paves the way for sustainable, large-scale production of health-beneficial metabolites, addressing global health challenges and promoting resource sustainability.
Referencias bibliográficas
- (2009), Reduca (Biol.) Ser. Veg. Physiol., 2, pp. 119
- Wink, M., Botschen, F., Gosmann, C., Schäfer, H., and Waterman, P.G. (2010). Chemotaxonomy seen from a phylogenetic perspective and evolution of secondary metabolism. Annual Plant Reviews Volume 40: Biochemistry of Plant Secondary Metabolism, John Wiley & Sons Ltd.
- Moore, (2014), New Phytol., 201, pp. 733, 10.1111/nph.12526
- Ashraf, M.A., Iqbal, M., Rasheed, R., Hussain, I., Riaz, M., and Arif, M.S. (2018). Environmental stress and secondary metabolites in plants: An overview. Plant Metabolites and Regulation under Environmental Stress, Academic Press.
- Akula, (2011), Plant Signal. Behav., 6, pp. 1720, 10.4161/psb.6.11.17613
- Qaderi, M.M., Martel, A.B., and Strugnell, C.A. (2023). Environmental factors regulate plant secondary metabolites. Plants, 12.
- Humbal, (2023), Plant Stress, 8, pp. 100166, 10.1016/j.stress.2023.100166
- Acosta-Motos, J.R., Penella, C., Hernández, J.A., Díaz-Vivancos, P., Sánchez-Blanco, M.J., Navarro, J.M., and Barba-Espín, G. (2020). Towards a sustainable agriculture: Strategies involving phytoprotectants against salt stress. Agronomy, 10.
- Pintos, (2014), Biol. Trac. Elem. Res., 161, pp. 143, 10.1007/s12011-014-0089-2
- Xie, X., He, Z., Chen, N., Tang, Z., Wang, Q., and Cai, Y. (2019). The roles of environmental factors in regulation of oxidative stress in plant. BioMed Res. Int., 2019.
- Gupta, (1987), Acta Hortic., 212, pp. 483, 10.17660/ActaHortic.1987.212.74
- Bueno, (1992), Phys. Plant., 85, pp. 30, 10.1111/j.1399-3054.1992.tb05259.x
- Makhlouf, (2019), North Afr. J. Food Nutr. Res., 3, pp. 148, 10.51745/najfnr.3.5.148-155
- Fernandes, (2009), J. Agri. Food Chem., 57, pp. 11154, 10.1021/jf902093m
- Bejarano, (2015), Phytother. Res., 29, pp. 1180, 10.1002/ptr.5364
- Patarra, (2015), Ind. Crops Prod., 64, pp. 45, 10.1016/j.indcrop.2014.11.001
- Santos, (2010), Ind. Crops Prod., 31, pp. 521, 10.1016/j.indcrop.2010.02.001
- Vattem, (2005), J. Food Biochem., 29, pp. 234, 10.1111/j.1745-4514.2005.00031.x
- Meng, (2013), Evid.-Based Complement. Altern. Med., 1, pp. 801457
- Kabir, (2014), J. Korean Soc. Appl. Biol. Chem., 57, pp. 359, 10.1007/s13765-014-4056-6
- Liang, N., and Kitts, D.D. (2016). Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients, 8.
- Barahuie, (2017), Mater. Sci. Eng. C, 74, pp. 177, 10.1016/j.msec.2016.11.114
- Murai, T., and Matsuda, S. (2023). The chemopreventive effects of chlorogenic acids, phenolic compounds in coffee, against inflammation, cancer, and neurological diseases. Molecules, 28.
- Mohapatra, (2023), J. Biomol. Struct. Dyn., 41, pp. 435, 10.1080/07391102.2021.2007170
- Anderson, (2020), Rev. Med. Virol., 30, pp. e2109, 10.1002/rmv.2109
- Deng, (2023), Clin. Microbiol. Infect., 29, pp. 578, 10.1016/j.cmi.2023.01.010
- Erland, (2016), Biotechnol. Adv., 34, pp. 1347, 10.1016/j.biotechadv.2016.10.002
- Wang, (2019), Food Chem., 278, pp. 170, 10.1016/j.foodchem.2018.11.041
- Vinha, (2016), Compr. Rev. Food Sci. Food Saf., 15, pp. 947, 10.1111/1541-4337.12220
- Valdiani, (2019), Crit. Rev. Biotechnol., 39, pp. 20, 10.1080/07388551.2018.1489778
- Neveu, (2010), Eur. J. Clin. Nutr., 64, pp. S112, 10.1038/ejcn.2010.221
- Haytowitz, D.B., Wu, X., and Bhagwat, S. (2018). USDA Database for the Flavonoid Content of Selected Foods, Release 3.3; US Department of Agriculture.
- Wang, (2001), J. Agric. Food Chem., 49, pp. 4977, 10.1021/jf0106244
- Boo, (2011), Plant Sci., 181, pp. 479, 10.1016/j.plantsci.2011.07.013
- Soengas, (2018), ACS Omega, 3, pp. 5237, 10.1021/acsomega.8b00242
- Alhdad, (2013), Environ. Exp. Bot., 87, pp. 120, 10.1016/j.envexpbot.2012.10.010
- Sharma, (2014), Biologia, 69, pp. 178, 10.2478/s11756-013-0298-8
- Chalker-Scott, L., and Fuchigami, L.H. (2018). The role of phenolic compounds in plant stress responses. Low Temperature Stress Physiology in Crops, CRC Press.
- Kumar, (2007), In Vitro Cell. Dev. Biol.-Plant, 43, pp. 602, 10.1007/s11627-007-9067-0
- Coberly, (2003), Mol. Ecol., 12, pp. 1113, 10.1046/j.1365-294X.2003.01786.x
- Rausher, M.D. (2006). The evolution of flavonoids and their genes. The Science of Flavonoids, Springer.
- Petrussa, (2013), Int. J. Mol. Sci., 14, pp. 14950, 10.3390/ijms140714950
- Fedina, (2008), Acta Physiol. Plant., 30, pp. 561, 10.1007/s11738-008-0155-5
- Antognoni, (2007), Fitoterapia, 78, pp. 345, 10.1016/j.fitote.2007.02.001
- Ryan, (2002), Phytochemistry, 59, pp. 23, 10.1016/S0031-9422(01)00404-6
- Cantos, (2003), J. Agric. Food Chem., 51, pp. 6248, 10.1021/jf030216v
- Daniel, (1989), J. Food Compos. Anal., 2, pp. 338, 10.1016/0889-1575(89)90005-7
- Sarker, U., and Oba, S. (2018). Augmentation of leaf color parameters, pigments, vitamins, phenolic acids, flavonoids and antioxidant activity in selected Amaranthus tricolor under salinity stress. Sci. Rep., 8.
- Heinonen, (2000), Eur. Food Res. Technol., 212, pp. 75, 10.1007/s002170000184
- Gumienna, (2016), Eur. Food Res. Technol., 242, pp. 631, 10.1007/s00217-015-2582-z
- Fujioka, (2008), Food Chem., 106, pp. 217, 10.1016/j.foodchem.2007.05.091
- Feldman, (1985), Am. J. Clin. Nutr., 42, pp. 639, 10.1093/ajcn/42.4.639
- Ravishankar, G.A., and Ramakrishna, A. (2016). Serotonin and Melatonin: Their Functional Role in Plants, Food, Phytomedicine, and Human Health, CRC Press.
- Grobe, (1982), Phytochemistry, 21, pp. 819, 10.1016/0031-9422(82)80071-X
- Kaur, (2015), Plant Signal. Behav., 10, pp. e1049788, 10.1080/15592324.2015.1049788
- Bueno, (1992), Sci. Gerund., 18, pp. 29
- Manzanera, (2014), For. Syst., 23, pp. 191, 10.5424/fs/2014232-05829
- Sommer, (1975), Bot. Gaz., 136, pp. 196, 10.1086/336802
- Murashige, (1962), Physiol. Plant., 15, pp. 473, 10.1111/j.1399-3054.1962.tb08052.x
- Cuvelier, (1995), LWT-Food Sci. Technol., 28, pp. 25, 10.1016/S0023-6438(95)80008-5
- Singleton, (1965), Am. J. Enol. Vitic., 16, pp. 144, 10.5344/ajev.1965.16.3.144
- Lock, O., Cabello, I., and Doroteo, V.H. (2006). Analysis of Flavonoids in Plants, Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú.
- Jin, (2008), Food Chem., 108, pp. 779, 10.1016/j.foodchem.2007.11.022