Whole-rock and Sm–Nd isotopic geochemistry of Triassic SW Iberia sandstonesimplications for provenance

  1. Cristina Gama 1
  2. Manuel Francisco Pereira 1
  3. José Manuel Fuenlabrada 2
  4. Ricardo Arenas 2
  1. 1 Universidade de Évora
    info

    Universidade de Évora

    Évora, Portugal

    ROR https://ror.org/02gyps716

  2. 2 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Revista:
Journal of iberian geology: an international publication of earth sciences

ISSN: 1886-7995 1698-6180

Año de publicación: 2021

Título del ejemplar: New developments in Geochemistry. A tribute to Carmen Galindo

Volumen: 47

Número: 1-2

Páginas: 189-207

Tipo: Artículo

DOI: 10.1007/S41513-020-00149-6 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of iberian geology: an international publication of earth sciences

Resumen

Se han utilizado datos de geoquímica de roca total y de geoquímica isotópica Sm–Nd para caracterizar las áreas fuentes probables de las areniscas del Triásico del Alentejo y Algarve. Estas rocas fueron depositadas en un contexto de rift y se proyectan dentro del campo reciclado, lo que confirma que proceden de un terreno orogénico reciclado. Todas muestran anomalías negativa de Eu, enriquecimiento en LREE y pautas casi planas de HREE, típicas de áreas fuentes situadas en la corteza continental superior. Sus edades modelo de Nd y sus poblaciones de circones detríticos son significativamente coincidentes con las de las formaciones Filita-Cuarcita y Tercenas del Devónico Superior – Carbonífero Inferior y con las de las turbiditas de la Formación Mira del Carbonífero Inferior, todas ellas situadas en la Zona Sudportuguesa (ZSP), lo que indica que estas pueden haber sido sus áreas fuentes dominantes, con una contribución menor de las turbiditas Viseenses de Mértola. En particular, las turbiditas de Mira pueden considerarse también cómo el área fuente principal de las areniscas Triásicas del sector oriental del Algarve. Además, las edades modelo de Nd y las poblaciones de circones detríticos de las areniscas del Triásico del Algarve central, en comparación con las de las formaciones Brejeira y Ronquillo de la ZSP, depositadas respectivamente en el Carbonífero Superior y Devónico Superior, indican una marcada procedencia a partir de un area fuente subsidente (source-to-sink). Finalmente, algunas de las areniscas Triásicas del Algarve occidental muestran edades modelo de Nd más antiguas, que no se han reconocido en la ZSP, lo que podría indicar que estas rocas sedimentarias derivan directamente de áreas fuentes remotas. Podemos avanzar la sugerencia de que además de áreas fuente remotas localizadas en el Terreno Meguma, otras localizadas en el Orógeno Varisco de Marruecos y generadas mediante reciclado sedimentario también se han identificado en el basamento Devono-Carbonífero de la ZSP. Estas series de la ZSP pueden representar depósitos sedimentarios intermedios, y podrían ser posteriormente retrabajados e incorporados en la cuenca Triásica del Algarve, indicando de este modo una sedimentación multi-ciclo.

Información de financiación

Financiadores

Referencias bibliográficas

  • Abati, J., Aghzer, A.M., Gerdes, A. & Ennih, N. (2010). Detrital zircon ages of Neoproterozoic sequences of the Moroccan Anti- Atlas belt. Precambrian Research 181
  • Abati, J., Aghzer, A. M., Gerdes, A., & Ennih, N. (2012). Insights on the crustal evolution of the West African Craton from Hf isotopes in detrital zircons from the Anti-Atlas belt. Precambrian Research, 212–213, 263–274.
  • Accoto, C., Martínez Poyatos, D. J., Azor, A., Talavera, C., Evans, N. J., Jabaloy-Sánchez, A., et al. (2019). Mixed and recycled detrital zircons in the Paleozoic rocks of the Eastern Moroccan Meseta: Paleogeographic inferences. Lithos, 338–339, 73–86.
  • Alves, T. M., Moita, C., Sandnes, F., Cunha, T., Monteiro, J. H., & Pinheiro, L. M. (2006). Mesozoic-Cenozoic evolution of North Atlantic continental-slope basins: the Peniche basin, western Iberian margin. American Association Petroleum Geology Bulletin, 90, 31–60.
  • Andersen, T. (2005). Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chemical Geology, 216, 249–270.
  • Arche, A., & López-Gómez, J. (2005). Sudden changes in fluvial style across the Permian-Triassic boundary in the eastern Iberian Ranges, Spain: analysis of possible causes. Palaeogeography, Palaeoclimatology, Palaeoecology, 229, 104–126.
  • Azerêdo, A. C., Duarte, L. V., Henriques, M. H., & Manuppella, G. (2003). Da dinâmica continental no Triásico aos Mares do Jurássico Inferior e Médio (pp. 1–43). Lisboa: Cadernos de Geologia de Portugal. Instituto Geológico e Mineiro.
  • Baidada, B., Cousens, B., Alansari, A., Soulaimani, A., Barbey, P., Ilmen, S., & Ikenne, M. (2017). Geochemistry and Sm–Nd isotopic composition of the Imiter Pan-African granitoids (Saghro massif, eastern Anti-Atlas, Morocco): Geotectonic implications. Journal of African Earth Sciences, 127, 99–112.
  • Barbeau, D. L., Davis, J. T., Murray, K. E., Valencia, V., Gehrels, G. E., Zahid, K. M., & Gombosi, D. J. (2009). Detrital-zircon geochronology of the metasedimentary rocks of north-western Graham Land. Antarctic Science, 22, 65–78.
  • Bhatia, M. R., & Crook, K. A. W. (1986). Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92(2), 181–193. https://doi.org/10.1007/BF00375292.
  • Boher, M., Abouchami, W., Michard, A., Albarede, F., & Arndt, N. T. (1992). Crustal growth in West Africa at 2.1 Ga. Journal of Geophysical Research, 97, 345–369.
  • Braid, J.A. (2011). Dynamics of Allochthonous Terranes in the Pangean Suture Zone of Sothern Iberia. Dalhousie University, unpublished Ph.D. thesis.
  • Braid, J. A., Murphy, J. B., Quesada, C., Bickerton, L., & Mortensen, J. K. (2012). Probing the composition of unexposed basement, South Portuguese Zone, Southern Iberia: implications for the connections between the Appalachian and Variscan orogens. Canadian Journal of Earth Sciences, 49, 591–613.
  • Braid, J. A., Murphy, J. B., Quesada, C., & Mortensen, M. (2011). Tectonic escape of a crustal fragment during the closure of the Rheic Ocean: U-Pb detrital zircon data from the Late Palaeozoic Pulo do Lobo and South Portuguese zones, southern Iberia. Journal of the Geological Society, London, 168, 383–392.
  • Chichorro, M., Pereira, M. F., Díaz-Azpiroz, M., Williams, I. S., Fernández, C., Pin, C., & Silva, J. B. (2008). Cambrian ensialic rift-related magmatism in the Ossa-Morena Zone (Évora-Aracena metamorphic belt, SW Iberian Massif): Sm–Nd isotopes and SHRIMP zircon U-Th–Pb geochronology. Tectonophysics, 461, 91–113. https ://doi.org/10.1016/j.tecto .2008.01.008.
  • Cullers, R. L. (2000). The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implication for provenance and metamorphic studies. Lithos, 51, 181–203.
  • D’Lemos, R. S., Inglis, J. D., & Samson, S. D. (2006). A newly discovered orogenic event in Morocco: Neoproterozic ages for supposed Eburnean basement of the Bou Azzer inlier. Anti-Atlas Mountains. Precambrian Research, 147(1–2), 65–78.
  • DePaolo, D. J. (1981). Neodymium isotopes in the Colorado Front Range and crust–mantle evolution in the Proterozoic. Nature, 291(5812), 193–196.
  • Dias, R., Oliveira, J.T., Matos, J.X., Ressureição, R., Pereira, Z., Machado, S., Pais, J., & Manuppella, G. (2016). Notícia Explicativa da Folha 42-A Grândola, Carta Geológica de Portugal à escala 1/50 000. Serviços Geológicos de Portugal, 106.
  • Dickinson, W. R., & Suczek, C. A. (1979). Plate tectonics and sandstone compositions. American Association Petroleum Geology Bulletin, 63, 2164–2182.
  • Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., et al. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94, 222–235.
  • Díez Fernández, R., Martínez Catalán, J. R., Gerdes, A., Abati, J., Arenas, R., & Fernández-Suárez, J. (2010). U-Pb ages of detrital zircons from the basal allochthonous units of NW Iberia: Provenance and paleoposition on the northern margin of Gondwana during the Neoproterozoic and Paleozoic. Gondwana Research, 18, 385–399.
  • Dinis, P. A., Fernandes, P., Jorge, R. C. G. S., Rodrigues, B., Chew, D. M., & Tassinari, C. G. (2018). The transition from Pangea amalgamation to fragmentation: constraints from detrital zircon geochronology on West Iberia paleogeography and sediment sources. Sedimentary Geology, 375, 172–187.
  • El Houicha, M., Pereira, M. F., Jouhari, A., Gama, C., Ennih, N., Fekkak, A., et al. (2018). Recycling of the Proterozoic crystalline basement in the Coastal Block (Moroccan Meseta): new insights for understanding the geodynamic evolution of the northern peri- Gondwanan realm. Precambrian Research, 306, 129–154.
  • Ennih, N., & Liégeois, J.-P. (2001). The Moroccan Anti-Atlas: the West African craton passive margin with limited Pan-African activity. Implications for the northern limit of the craton. Precambrian Research, 112, 289–302.
  • Ennih, N., & Liégeois, J.-P. (2008). The boundaries of the West African Craton, with special reference to the basement of the Moroccan metacratonic Anti-Atlas belt. Geological Society, London, Special Publications, 297(1), 1–17.
  • Floyd, P. A., & Leveridge, B. E. (1987). Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society, London, 144, 531–542.
  • Fuenlabrada, J. M., Arenas, R., Diez Fernández, R., Sánchez Martínez, S., Abati, J., & López Carmona, A. (2012). Sm–Nd isotope geochemistry and tectonic setting of the metasedimentary rocks from the basal allochthonous units of NW Iberia (Variscan suture, Galicia). Lithos, 148, 196–208.
  • Gama, C., Pereira, M. F., Crowley, Q. G., Dias da Silva, Í., & Silva, J. B. (2020). Detrital zircon provenance of Triassic sandstone of the Algarve Basin (SW Iberia): Evidence of Gondwananand Laurussian-type sources of sediment. Geological Magazine. https ://doi.org/10.1017/S0016 75682 00003 70.
  • Gehrels, G. E., Blakey, R., Karlstrom, K. E., Timmons, J. M., Dickinson, B., & Pecha, M. (2011). Detrital zircon U-Pb geochronology of Paleozoic strata in the Grand Canyon. Arizona. Lithosphere, 3(3), 183–200.
  • Herron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58, 820–829.
  • Hoepffner, C., Soulaimani, A., & Piqué, A. (2005). The Moroccan Hercynides. Journal of African Earth Sciences, 43, 144–165.
  • Inverno, C., Manuppella, G., Zbyszewski, G., Pais, J., & Ribeiro, M.L. (1993). Notícia Explicativa da Folha 42-C Santiago do Cacém, Carta Geológica de Portugal à escala 1/50 000. Serviços Geológicos de Portugal, 75.
  • Jacobsen, S. B., & Wasserburg, G. J. (1980). Sm-Nd isotopic evolution of chondrites. Earth Planetary Science Letters., 50, 139–155.
  • Jorge, R. C. G. S., Fernandes, P., Rodrigues, B., Pereira, Z., & Oliveira, J. T. (2013). Geochemistry and provenance of the Carboniferous Baixo Alentejo Flysch Group, South Portuguese Zone. Sedimentary Geology, 284, 133–148. https ://doi. org/10.1016/j.sedge o.2012.12.005.
  • Keppie, J. D., Dostal, J., Murphy, J. B., & Cousens, B. L. (1997). Palaeozoic within-plate volcanic rocks in Nova Scotia (Canada) reinterpreted: isotopic constraints on magmatic source and palaeocontinental reconstructions. Geological Magazine, 134, 425–447. https ://doi.org/10.1017/S0016 75689 70071 9X.
  • López-Gómez, J., Alonso-Azcárate, J., Arche, A., Arribas, J., Barrenechea, J. F., Borruel-Abadía, V., et al. (2008). Ediacaran- Palaeozoic tectonic evolution of the Ossa Morena and Central Iberian zones (SW Iberia) as revealed by Sm–Nd isotope systematics. Tectonophysics, 461, 202–214. https ://doi. org/10.1016/j.tecto .2008.06.006.
  • López-Gómez, J., Arche, A., Marzo, M., & Durand, M. (2005). Stratigraphical and palaeogeographical significance of the continental sedimentary transition across the Permian-Triassic boundary in Spain. Palaeogeography, Palaeoclimatology & Palaeoecology, 229, 3–23.
  • Mateus, O., Butler, R. J., Brusatte, S. L., & Whiteside, J. H. (2014). The first Phytosaur (Diapsida, Archisauriformes) from the Late Triassic of the Iberian Peninsula. Journal of Vertebrate Paleontology, 34(4), 970–975.
  • Matte, P. H. (2001). The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova, 13(2), 122–128.
  • Mckie, T., & Williams, B. (2009). Triassic palaeogeography and fluvial dispersal across the northwest European Basins. Geological Journal, 44, 711–741.
  • McLennan, S. M., Hemming S., McDaniel, D. K., & Hanson, G. N. (1993). Geochemical approaches to sedimentation, provenance and tectonics. Geological Society of America Special Papers, 284, 295–303.
  • Mclennan, S. M., & Taylor, S. R. (1991). Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. Journal of Geology, 99, 1–21.
  • Michard, A., Soulaimani, A., Hoepffner, C., Ouanaimi, H., Baidder, L., Rjimati, E. C., & Saddiqi, O. (2010). The South-Western Branch of the Variscan Belt: evidence from Morocco. Tectonophysics, 492, 1–24.
  • Mitjavila, J., Marti, J., & Soriano, C. (1997). Magmatic evolution and tectonic setting of the Iberian Pyrite Belt volcanism. Journal of Petrology, 38(6), 727–755.
  • Murphy, J. B. (2002). Geochemistry of the Neoproterozoic metasedimentary Gamble Brook Formation, Avalon terrane, Nova Scotia: evidence for a rifted arc environment along the west Gondwanan margin of Rodinia. Journal of Geology, 110, 78–96. https ://doi. org/10.1086/34063 0.
  • Murphy, J. B., & Nance, R. D. (2002). Nd-Sm isotopic systematics as tectonic tracers: an example from West Avalonia. Canadian Appalachians. Earth-Science Reviews, 59(1–4), 77–100. https :// doi.org/10.1016/S0012 -8252(02)00070 -3.
  • Nance, R. D., Gutiérrez-Alonso, G., Keppie, J. D., Linnemann, U., Murphy, J. B., Quesada, C., et al. (2010). Evolution of the Rheic Ocean. Gondwana Research, 17(2–3), 194–222.
  • Oliveira, J. T. (1990). The South Portuguese Zone. Stratigraphy and synsedimentary tectonism. In R. D. Dallmeyer & E. Martínez- García (Eds.), Pre-mesozoic geology of Iberia (pp. 334–347). Berlin: Springer Verlag.
  • Oliveira, J. T., Rosa, C. J. P., Pereira, Z., Rosa, D. R. N., Matos, J. X., Inverno, C. M. C., & Andersen, T. (2013). Geology of the Rosa´rio–Neves Corvo antiform, Iberian Pyrite Belt, Portugal: New insights from physical volcanology, palynostratigraphy and isotope geochronology studies. Mineralium Deposita, 48, 749–766.
  • O’Nions, R. K., Carter, S. R., Evensen, N. M., & Hamilton, P. J. (1979). Geochemical and cosmochemical applications of Nd isotope analysis. Annual Review of Earth and Planetary Sciences, 7, 11–38.
  • Palain, C. (1976). Une série détritique terrigène. Les ‘“Grès de Silves”’: Trias et Lias inférieur du Portugal. Memória dos Serviços Geológicos de Portugal, 25, 1–37.
  • Pereira, M. F., Chichorro, M., Johnston, S. T., Gutiérrez-Alonso, G., Silva, J. B., Linnemann, U., et al. (2012). The missing Rheic Ocean magmatic arcs: provenance analysis of late Paleozoic sedimentary clastic rocks of SW Iberia. Gondwana Research, 22, 882–891.
  • Pereira, M. F., El Houicha, M., Chichorro, M., Armstrong, R., Jouhari, A., El Attari, A., et al. (2015). Evidence of a Paleoproterozoic basement in the Moroccan Variscan Belt (Rehamna Massif, Western Meseta). Precambrian Research, 268, 61–73.
  • Pereira, M. F., Albardeiro, L., Gama, C., Chichorro, M., Hofmann, M., & Linnemann, U. (2016). Provenance of Holocene beach sand in the Western Iberian margin: the use of the Kolmogorov-Smirnov test for the deciphering of sediment recycling in a modern coastal system. Sedimentology, 63(5), 1149–1167.
  • Pereira, M. F., & Gama, C. (2017). Detrital provenance of the Upper Triassic siliciclastic rocks from southwest Iberia: a review. Journal of Iberian Geology, 43, 379–393.
  • Pereira, M. F., Gama, C., Dias da Silva, I., Fuenlabrada, J. M., Silva, J. B., & Medina, J. (2020). Isotope geochemistry evidence for Laurussian-type sources of South Portuguese Zone Carboniferous turbidites (Variscan Orogeny). In J. B. Murphy, R. A. Strachan, & C. Quesada (Eds.), Pannotia to Pangaea: Neoproterozoic and Paleozoic orogenic cycles in the Circum-Atlantic Region (p. 503). London: Geological Society, Special Publications. https ://doi. org/10.1144/SP503 -2019-163
  • Pereira, M. F., Ribeiro, C., Gama, C., Drost, K., Chichorro, M., Vilallonga, F., et al. (2017). Provenance of upper Triassic sandstone, southwest Iberia (Alentejo and Algarve basins): tracing variability in the sources. International Journal of Earth Sciences, 106(1), 43–57.
  • Pereira, M. F., Ribeiro, C., Vilallonga, F., Chichorro, M., Drost, K., Silva, J. B., et al. (2014). Variability over time in the sources of South Portuguese Zone turbidites: evidence of denudation of different crustal blocks during the assembly of Pangea. International Journal of Earth Sciences, 103, 1453–1470.
  • Pereira, Z., Fernandes, P., & Oliveira, J. T. (2007). Devonian and Carboniferous palynostratigraphy of the South Portuguese Zone, Portugal - an overview. Comunicações Geológicas, 94, 53–79.
  • Pérez-Cáceres, I., Poyatos, D. M., Simancas, J. F., & Azor, A. (2017). Testing the Avalonian affinity of the South Portuguese Zone and the Neoproterozoic evolution of SW Iberia through detrital zircon populations. Gondwana Research, 42, 177–192.
  • Rocha, R.B., Ramalho, M.M., Manuppela, G., Zbyszewski, G., & Pinto Coelho, A.V. (1979). Notícia Explicativa da Folha 51-B, Vila do Bispo, Carta Geológica de Portugal à escala 1/50 000. Serviços Geológicos de Portugal, 118.
  • Rodrigues, B., Chew, D. M., Jorge, R. C. G. S., Fernandes, P., Veiga- Pires, C., & Oliveira, J. T. (2015). Detrital zircon geochronology of the Carboniferous Baixo Alentejo Flysch Group (South Portugal); constraints on the provenance and geodynamic evolution of the South Portuguese Zone. Journal of the Geological Society of London, 172, 294–308.
  • Rojo-Pérez, E., Arenas, R., Fuenlabrada, J. M., Sánchez Martínez, S., Martín Parra, L. M., Matas, J., et al. (2019). Contrasting isotopic sources (Sm-Nd) of Late Ediacaran series in the Iberian Massif: Implications for the Central Iberian-Ossa Morena boundary. Precambrian Research, 324, 194–207. https ://doi.org/10.1016/j. preca mres.2019.01.021.
  • Rosa, D. R. N., Finch, A. A., Andersen, T., & Inverno, C. M. C. (2009). U-Pb geochronology and Hf isotope ratios of magmatic zircons from the Iberian Pyrite Belt. Mineralogy and Petrology, 95, 47–69.
  • Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/ Na2O ratio. The Journal of Geology, 94(5), 635–650. https ://doi. org/10.1086/62907 1.
  • Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone– mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67, 119–139.
  • Sánchez Martínez, S., De la Horra, R., Arenas, R., Gerdes, A., Galán- Abellán, A. B., López-Gómez, J., et al. (2012). U-Pb ages of detrital zircons from the Permo-Triassic Series of the Iberian Ranges: A record of variable provenance during rift propagation. Journal of Geology, 120(2), 135–154.
  • Simancas, J.F. (1983). Geología de la extremidad oriental de la Zona Sudportuguesa. Unpublished Ph.D. thesis, University of Granada. p. 439.
  • Soares, F. A., Kullberg, J. C., Marques, J. F., Rocha, R. B., & Callapez, P. M. (2012). Tectonosedimentary model for the evolution of the Silves Group (Triassic Lusitanian basin, Portugal). Bulletin Societe Geologique du France, 183(3), 203–216.
  • Sopeña, A., López-Gómez, J., Arche, A., Pérez-Arlucea, M., Ramos, A., Virgili, C., & Hernando, S. (1988). Permian and Triassic rift basins of the Iberian Peninsula. In W. Manspeizer (Ed.), Triassic- Jurassic rifting: continental breakup and the origin of the Atlantic Ocean and Passive Margins. B. Developments in GEOTECTONICS 22 (pp. 757–784). New York: Elsevier.
  • Spencer, C. J., Kirkland, C. L., & Taylor, R. J. M. (2016). Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geoscience Frontiers, 7, 581–589. https ://doi. org/10.1016/j.gsf.2015.11.006.
  • Steyer, J. S., Mateus, O., Butler, R., Brusatte, S., & Whiteside, J. (2011). A new metoposaurid (temnospondyl) bonebed from the Late Triassic of Portugal. Journal of Vertebrate Paleontology, 31(Program and Abstracts), 200.
  • Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., et al. (2000). JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology, 168, 279–281. https ://doi.org/10.1016/S0009 -2541(00)00198 -4.
  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution. London: Blackwell.
  • Terrinha, P., Kullberg, J. C., Neres, M., Alves, T., Ramos, A., Ribeiro, C., et al. (2019). Rifting of the Southwest and West Iberia, 6- Continental Margins. In C. Quesada & J. T. Oliveira (Eds.), The geology of Iberia: A geodynamic approach, Volume 3: The Alpine Cycle (pp. 251–283). Berlin: Springer International Publishing.
  • Verma, S. P., & Armstrong-Altrin, S. J. (2013). New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355, 117–133.
  • Vermeesch, P. (2013). On the visualization of detrital age distributions. Chemical Geology, 341, 140–146.
  • Wissink, G. K., Wilkinson, B. H., & Hoke, G. D. (2018). Pairwise sample comparisons and multidimensional scaling of detrital zircon ages with examples from the North American platform, basin, and passive margin settings. Lithosphere, 10, 478–491.
  • Yamashita, K., Creaser, R. A., Jenses, J. E., & Heaman, L. M. (2000). Origin and evolution of mid- to late-Archean crust in the Hanikahimajuk Lake area, Slave Province, Canada; evidence from U-Pb geochronological, geochemical and Nd-Pb isotopic data. Precambrian Research, 99, 197–224.