Tectonic setting and isotopic sources, Sm–Nd, of the SW Iberian Autochthon, Variscan Orogen

  1. José Manuel Fuenlabrada 1
  2. Ricardo Arenas 1
  3. Rubén Díez Fernández 2
  4. José González del Tánago 1
  5. Luis Miguel Martín Parra 2
  6. Jerónimo Matas 2
  7. Esther Rojo Pérez 1
  8. Sonia Sánchez Martínez 1
  9. Pilar Andonaegui 1
  10. Byron Solis Alulima 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  2. 2 Instituto Geológico y Minero de España
    info

    Instituto Geológico y Minero de España

    Madrid, España

    ROR https://ror.org/04cadha73

Revista:
Journal of iberian geology: an international publication of earth sciences

ISSN: 1886-7995 1698-6180

Año de publicación: 2021

Título del ejemplar: New developments in Geochemistry. A tribute to Carmen Galindo

Volumen: 47

Número: 1-2

Páginas: 121-150

Tipo: Artículo

DOI: 10.1007/S41513-020-00148-7 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of iberian geology: an international publication of earth sciences

Resumen

Las series de rocas metasedimentarias en el Grupo Sierra Albarrana (Dominio Autóctono del SW de Iberia) se depositaron durante el Paleozoico Inferior, influidas por la evolución de un margen activo peri-Gondwánico. Su composición geoquímica indica una contribución dominante desde fuentes ígneas félsicas con afinidad con una corteza continental superior. La elevada madurez mineralógica y geoquímica, junto con valores negativos de εNd(530) (− 11.3 a − 4.5) y edades modelo de Nd relativamente antiguas (TDM: 1388–1897 Ma), implica materiales retrabajados desde áreas fuente continentales antiguas, con una contribución juvenil limitada para las rocas siliciclásticas estudiadas en el Grupo Sierra Albarrana. Sus características geoquímicas e isotópicas fueron fruto de una denudación progresiva de rocas con una composición isotópica afín a un basamento antiguo expuesto a lo largo del margen de Gondwana. Teniendo en cuenta la información disponible para el SW del Macizo Ibérico, la paleocuenca del Dominio Autóctono del SW de Iberia probablemente ocupó posiciones externas en el margen peri-Gondwánico durante la transición Ediacárico-Cámbrico. En un contexto de convergencia, la interacción entre la trinchera peri-Gondwánica y la parte externa del continente ocasionó probablemente un levantamiento tectónico pronunciado, dando lugar a la exposición y posterior erosión de la corteza continental peri-Gondwánica formada durante las etapas iniciales de la Orogenia Cadomiense. La redistribución de sedimentos durante el Paleozoico Inferior aportó materiales detríticos reciclados, que probablemente rellenaron una cuenca retro-arco, formada tras el cambio de un régimen compresivo a uno extensional en la placa superior del Orógeno Cadomiense y que se registra a lo largo de todo el dominio peri-Gondwánico de Iberia. El avance en la extensión condujo a un progresivo ensanchamiento de las cuencas marginales, marcando el inicio de un margen pasivo desde el periodo Cambro-Ordovícico en adelante. Las edades modelo de Nd del Grupo Sierra Albarrana se solapan con las obtenidas en series del Cámbrico Inferior del sur de la Zona Centro Ibérica, y se consideran indicadoras de una cercanía paleogeográfica entre estas secuencias durante el Cámbrico, ocupando posiciones relativamente orientales, cercanas al Escudo de Tuareg y al Metacratón del Sahara.

Información de financiación

Referencias bibliográficas

  • Ábalos, B., Eguiluz, L., & Apalategui, O. (1990). Constitución tectonoestratigráfica del Corredor Blastomilonítico de Badajoz - Córdoba: nueva propuesta de subdivisión. Geogaceta, 7, 71–73.
  • Ábalos, B., Gil Ibarguchi, J. I., Sánchez-Lorda, M. E., & Paquette, J. L. (2012). African/Amazonian proterozoic correlations of Iberia: a detrital zircon U–Pb study of early Cambrian conglomerates from the Sierra de la Demanda (Northern Spain). Tectonics, 31, TC3003. https ://doi.org/10.1029/2011T C0030 41.
  • Abati, J., Arenas, R., Díez Fernández, R., Albert, R., & Gerdes, A. (2018). Combined zircon U–Pb and Lu–Hf isotopes study of magmatism and high-P metamorphism of the basal allochthonous units in the SW Iberian Massif (Ossa-Morena complex). Lithos, 322, 20–37.
  • Abati, J., Gerdes, A., Fernández-Suárez, J., Arenas, R., Whitehouse, M. J., & Díez Fernández, R. (2010). Magmatism and early-Variscan continental subduction in the northern Gondwana margin recorded in zircons from the basal units of Galicia, NW Spain. Geological Society of America Bulletin, 122, 219–235. https :// doi.org/10.1130/B2657 2.1.
  • Abbo, A., Avigad, D., Gerdes, A., & Güngör, T. (2015). Cadomian basement and Paleozoic to Triassic siliciclastics of the Taurides (Karacahisar dome, south-central Turkey): paleogeographic constraints from U–Pb–Hf in zircons. Lithos, 227, 122–139. https :// doi.org/10.1016/j.litho s.2015.03.023.
  • Albert, R., Arenas, R., Gerdes, A., Sánchez Martínez, S., Fernández- Suárez, J., & Fuenlabrada, J. M. (2015). Provenance of the Variscan Upper Allochthon (Cabo Ortegal complex, NW Iberian Massif). Gondwana Research., 28, 1434–1448. https ://doi. org/10.1016/j.gr.2014.10.016.
  • Alvarez Nava, H., García Casquero, J. L., Gil Toja, A., Hernández Urroz, J., Lorenzo Alvarez, S., López Díaz, F., et al. (1988). Unidades litoestratigráficas de los materiales Precámbrico- Cámbricos en la mitad suroriental de la Zona Centro-Ibérica. II Congreso Geológico de España, SGE, Granada, 1, 19–22.
  • Andonaegui, P., Abati, J., & Díez Fernández, R. (2017). Late Cambrian magmatic arc activity in peri-Gondwana: Geochemical evidence from metagranitoid rocks of the Basal Allochthonous Units of NW Iberia. Geologica Acta, 15(4), 305–321. https ://doi. org/10.1344/Geolo gicaA cta20 17.15.4.4.
  • Andonaegui, P., Arenas, R., Albert, R., Sánchez Martínez, S., Díez Fernández, R., & Gerdes, A. (2016). The last stages of the Avalonian- Cadomian arc in NW Iberian Massif: Isotopic and igneous record for a long-lived peri-Gondwanan magmatic arc. Tectonophysics, 681, 6–14. https ://doi.org/10.1016/j.tecto .2016.02.032.
  • Andonaegui, P., González del Tánago, J., Arenas, R., Abati, J., Martínez Catalán, J.R., Peinado, M. & Díaz García, F., (2002). Variscan- Appalachian Dynamics: The Building of the Late Paleozoic Basement. In J.R. Martínez Catalán, R.D. Hatcher, R. Arenas & F. Díaz García, (Eds.), Tectonic setting of the Monte Castelo gabbro (Ordenes Complex, northwestern Iberian Massif): Evidence for an arc-related terrane in the hanging wall to the Variscan suture. Geological Society of America (pp. 37–56), 364. https :// doi.org/10.1130/0-8137-2364-7.37.
  • Apalategui, O., Borrero, J., & Higueras, P. (1985). División en grupos de rocas en Sierra Morena Oriental. Colección Temas Geológico- Mineros, 2, 73–80.
  • Arenas, R., Díez Fernández, R., Rubio Pascual, F. J., Sánchez Martínez, S., Martín Parra, L. M., Matas, J., et al. (2016b). The Galicia– Ossa-Morena zone: Proposal for a new zone of the Iberian Massif. Variscan implications. Tectonophysics, 681, 135–143. https ://doi.org/10.1016/j.tecto .2016.02.030.
  • Arenas, R., Díez Fernández, R., Sánchez Martínez, S., Gerdes, A., Fernández-Suárez, J., & Albert, R. (2014). Two-stage collision: exploring the birth of Pangea in the Variscan terranes. Gondwana Research, 25, 756–763. https ://doi.org/10.1016/j.gr.2013.08.009.
  • Arenas, R., Fernández-Suárez, J., Montero, P., Díez Fernández, R., Andonaegui, P., Sánchez Martínez, S., et al. (2018). The Calzadilla Ophiolite (SW Iberia) and the Ediacaran fore-arc evolution of the African margin of Gondwana. Gondwana Research, 58, 71–86. https ://doi.org/10.1016/j.gr.2018.01.015.
  • Arenas, R., Gil Ibarguchi, J. I., González Lodeiro, F., Klein, E., Martínez Catalán, J. R., Ortega Gironés, E., et al. (1986). Tectonostratigraphic units in the complexes with mafic and related rocks of the NW of the Iberian Massif. Hercynica, 2, 87–110.
  • Arenas, R., Sánchez Martínez, S., Albert, R., Haissen, F., Fernández- Suárez, J., Pujol-Solà, N., Andonaegui, P., Díez Fernández, R., Proenza, J.A., García-Casco, A. & Gerdes, A., (2020). 100 myr cycles of oceanic lithosphere generation in peri-Gondwana: Neoproterozoic–Devonian ophiolites from the NW African–Iberian margin of Gondwana and the Variscan Orogen. Geological Society, London, Special Publications (pp. 503) https ://doi. org/10.1144/SP503 -2020-3.
  • Arenas, R., Sánchez Martínez, S., Díez Fernández, R., Gerdes, A., Abati, J., Fernández-Suárez, J., et al. (2016a). Allochthonous terranes involved in the Variscan suture of NW Iberia: A review of their origin and tectonothermal evolution. Earth- Science Reviews, 161, 140–178. https ://doi.org/10.1016/j.earsc irev.2016.08.010.
  • Armitage, J., Duller, R., Whittaker, A., & Allen, P. A. (2011). Transformation of tectonic and climatic signals from source to sedimentary archive. Nature Geoscience, 4, 231–235. https://doi.org/10.1038/ngeo1087.
  • Armstrong-Altrin, J. S., Lee, Y. I., Verma, S. P., & Ramasamy, S. (2004). Geochemistry of sandstones from the upper Miocene Kudankulam formation, southern India: Implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research, 74, 285–297. https://doi.org/10.1306/082803740285.
  • Avigad, D., Gerdes, A., Morag, N., & Bechstädt, T. (2012). Coupled U–Pb–Hf of detrital zircons of Cambrian sandstones from Morocco and Sardinia: Implications for provenance and Precambrian crustal evolution of North Africa. Gondwana Research, 21, 690–703. https://doi.org/10.1016/j.gr.2011.06.005.
  • Avigad, D., Kolodner, K., McWilliams, M., Persing, H., & Weissbrod, T. (2003). Origin of northern Gondwana Cambrian sandstone revealed by detrital zircon SHRIMP dating. Geology, 31(3), 227–230. https://doi.org/10.1130/0091-7613(2003)031%3c022 7:OONGCS%3e2.0.CO;2.
  • Avigad, D., Rossi, Ph., Gerdes, A., & Abbo, A. (2018). Cadomian metasediments and Ordovician sandstone from Corsica: Detrital zircon U–Pb–Hf constrains on their provenance and paleogeography. International Journal of Earth Sciences (Geol Rundsch), 107, 2803–2818. https://doi.org/10.1007/s00531-018-1629-3.
  • Azor, A., (1994). Evolución tectonometamórfica del límite entre las zonas Centroibérica y de Ossa-Morena (Cordillera Varisca, SO de España) (PhD thesis) Universidad de Granada, Spain (pp. 295).
  • Azor, A., & Ballèvre, M. (1997). Low-pressure metamorphism in the Sierra Albarrana Area (Variscan Belt, Iberian Massif). Journal of Petrology, 38(1), 35–64. https ://doi.org/10.1093/petro j/38.1.35.
  • Azor, A., Expósito, I., González Lodeiro, F., Simancas, J. F., & Martínez Poyatos, D. (2004). La Unidad de Sierra Albarrana. In J. A. Vera (Ed.), Geología de España (pp. 182–186). Madrid: SGE-IGME.
  • Azor, A., González Lodeiro, F., Marcos, A., & Simancas, J. F. (1991). Edad y estructura de las rocas de Sierra Albarrana (SW del Macizo Hespérico). Implicaciones regionales. Geogaceta, 10, 119–124.
  • Azor, A., Lodeiro, F. G., & Simancas, J. F. (1994). Tectonic evolution of the boundary between the central Iberian and the Ossa-Morena zones (Variscan belt, southwest Spain). Tectonics, 13, 45–61. https://doi.org/10.1029/93TC02724.
  • Azor, A., Simancas, J. F., Martínez Poyatos, D. J., Montero, P., González Lodeiro, F., & Gabites, J. (2012). Nuevos datos geocronológicos sobre la evolución tectonometamórfica de la Unidad de Sierra Albarrana (Zona de Ossa-Morena, SO de Iberia). Geo- Temas, 13, 341–344.
  • Azor, A., Simancas, J. F., Martínez Poyatos, D. J., Montero, P., González Lodeiro, F., & Pérez-Cáceres, I. (2016). U–Pb zircon age and tectonic meaning of the Cardenchosa pluton (Ossa- Morena Zone). Geo-Temas, 2, 23–26.
  • Ballèvre, M., Le Goff, E., & Hébert, R. (2001). The tectonothermal evolution of the Cadomian belt of northern Brittany, France: A Neoproterozoic volcanic arc. Tectonophysics, 331(1–2), 19–43. https ://doi.org/10.1016/S0040 -1951(00)00234 -1.
  • Bandrés, A., (2001). Evolución geodinámica poliorogénica de los dominios septentrionales de la ZOM. Universidad del País Vasco, Tesis Doctoral (pp. 377).
  • Bea, F., Montero, P., Talavera, C., Abu Anbar, M., Scarrow, J., Molina, J. F., & Moreno, J. A. (2010). The palaeogeographic position of Central Iberia in Gondwana during the Ordovician: Evidence from zircon geochronology and Nd isotopes. Terra Nova, 22, 341–346. https ://doi.org/10.1111/j.1365-3121.2010.00957 .x.
  • Bhatia, M. R., & Crook, K. A. W. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181–193. https ://doi.org/10.1007/BF003 75292 .
  • Brahimi, S., Liégeois, J. P., Ghienne, J. F., Munschy, M., & Bourmatte, A. (2018). The Tuareg shield terranes revisited and extended towards the northern Gondwana margin: Magnetic and gravimetric constraints. Earth-Science Reviews, 185, 572–599. https ://doi.org/10.1016/j.earsc irev.2018.07.002.
  • Cambeses, A., Scarrow, J. H., Montero, P., Lázaro, C., & Bea, F. (2017). Palaeogeography and crustal evolution of the Ossa- Morena Zone, southwest Iberia, and the North Gondwana margin during the Cambro–Ordovician: A review of isotopic evidence. International Geology Review, 59, 94–130. https ://doi. org/10.1080/00206 814.2016.12192 79.
  • Carvalhosa, A. (1965). Contribuição para o conhecimento geológico da região entre Portel e Ficalho (Alentejo). Memorias dos Serviços Geológicos de Portugal. Nova Série, 11, 1–32.
  • Chacón, J., Delgado Quesada, M., & Garrote, A. (1974). Sobre la existencia de dos diferentes dominios de metamorfismo regional en la banda Elvas-Badajoz-Córdoba. Boletín Geológico y Minero, 85, 713–717.
  • Collett, S., Schulmann, K., Štípská, P., & Míková, J. (2020). Chronological and geochemical constraints on the pre-variscan tectonic history of the Erzgebirge, Saxothuringian Zone. Gondwana Research, 79, 27–48. https ://doi.org/10.1016/j.gr.2019.09.009.
  • Condie, K. C. (1993). Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104, 1–37. https ://doi. org/10.1016/0009-2541(93)90140 -E.
  • Condie, K. C., Dengate, J., & Cullers, R. L. (1995). Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA. Geochimica et Cosmochimica Acta, 59(2), 279–294. https ://doi.org/10.1016/0016-7037(94)00280 -Y.
  • Cox, R., Lowe, D. R., & Cullers, R. L. (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59(14), 2919–2940. https ://doi. org/10.1016/0016-7037(95)00185 -9.
  • Cullers, R. L. (1994). The controls on the major and trace element variation of shales, siltstones and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica et Cosmochimica Acta, 58, 4955–4972. https ://doi.org/10.1016/0016-7037(94)90224 -0.
  • Cullers, R. L. (2002). Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chemical Geology, 191, 305–327. https ://doi.org/10.1016/S0009 -2541(02)00133 -X.
  • Dallmeyer, R. D., Martínez Catalán, J. R., Arenas, R., Gil Ibarguchi, J. I., Gutiérrez Alonso, G., Farias, P., et al. (1997). Diachronous Variscan tectonothermal activity in the NW Iberian Massif: Evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics, 277, 307–337. https ://doi.org/10.1016/S0040- 1951(97)00035 -8.
  • Dallmeyer, R. D., & Quesada, C. (1992). Cadomian vs. Variscan evolution of the Ossa-Morena zone (SW Iberia): Field and 40Ar/39Ar mineral age constrains. Tectonophysics, 216, 339–364. https :// doi.org/10.1016/0040-1951(92)90405 -U.
  • Delgado Quesada, M. (1971). Esquema geológico de la Hoja núm. 878 de Azuaga, Badajoz. Boletín Geológico y Minero, 82, 277–286.
  • Delgado Quesada, M., Liñán, Ε, Pascual, Ε, & Pérez-Lorente, F. (1977). Criterios para la diferenciación de Dominios en Sierra Morena Central. Studia Geologica Salmanticensia, 12, 75–90.
  • DePaolo, D. J. (1981). Neodymium isotopes in the Colorado front range and crustal–mantle evolution in the Proterozoic. Nature, 291, 193–196. https ://doi.org/10.1038/29119 3a0.
  • DePaolo, D. J. (1983). The mean life of continents: Estimates of continent recycling rates from Nd and Hf isotopic data and implications for mantle structure. Geophysical Research Letters, 10, 705–708. https ://doi.org/10.1029/GL010 i008p 00705 .
  • Díaz García, F., Sánchez Martínez, S., Castiñeiras, P., Fuenlabrada, J. M., & Arenas, R. (2010). A peri-Gondwanan arc in NW Iberia. II: Assessment of the intra-arc tectonothermal evolution through U–Pb SHRIMP dating of mafic dykes. Gondwana Research, 17, 352–362. https ://doi.org/10.1016/j.gr.2009.09.010.
  • Díez Fernández, R., & Arenas, R. (2015). The Late Devonian Variscan suture of the Iberian Massif: A correlation of high-pressure belts in NW and SW Iberia. Tectonophysics, 654, 96–100. https ://doi. org/10.1016/j.tecto .2015.05.001.
  • Díez Fernández, R., Arenas, R., Francisco Pereira, M., Sánchez Martínez, S., Albert Roper, R., Martín Parra, L. M., et al. (2016). Tectonic evolution of Variscan Iberia: Gondwana–Laurussia collision revisited. Earth-Science Reviews, 162, 269–292. https :// doi.org/10.1016/j.earsc irev.2016.08.002.
  • Díez Fernández, R., Fuenlabrada, J. M., Chichorro, M., Pereira, M. F., Sánchez Martínez, S., Silva, J. B., & Arenas, R. (2017). Geochemistry and tectonostratigraphy of the basal allochthonous units of SW Iberia (Évora Massif, Portugal): Keys to the reconstruction of pre-Pangean paleogeography in southern Europe. Lithos, 268–271, 285–301. https ://doi.org/10.1016/j. litho s.2016.10.031.
  • Díez Fernández, R., Jiménez-Díaz, A., Arenas, R., Pereira, M. F., & Fernández-Suárez, J. (2019). Ediacaran obduction of a fore-arc ophiolite in SW Iberia: A turning point in the evolving geodynamic setting of peri-Gondwana. Tectonics, 38, 95–119. https :// doi.org/10.1029/2018T C0052 24.
  • Díez Fernández, R., Martínez Catalán, J. R., Gerdes, A., Abati, J., Arenas, R., & Fernández- Suárez, J. (2010). U–Pb ages of detrital zircons from the Basal allochthonous units of NW Iberia: Provenance and paleoposition on the northern margin of Gondwana during the Neoproterozoic and Paleozoic. Gondwana Research, 18, 385–399. https ://doi.org/10.1016/j.gr.2009.12.006.
  • Drost, K., Gerdes, A., Jeffries, T., Linnemann, U., & Storey, C. (2011). Provenance of Neoproterozoic and early Paleozoic siliciclastic rocks of the Teplá-Barrandian unit (Bohemian Massif): Evidence from U–Pb detrital zircon ages. Gondwana Research, 19, 213– 231. https ://doi.org/10.1016/j.gr.2010.05.003.
  • Eguíluz, L., (1987). Petrogénesis de rocas ígneas y metamórficas en el Antiforme Burguillos-Monesterio, Macizo Ibérico Meridional, (PhD thesis) (pp. 694). Universidad del País Vasco.
  • Eguíluz, L., Gil Ibarguchi, J. I., Abalos, B., & Apraiz, A. (2000). Superposed Hercynian and Cadomian orogenic cycles in the Ossa-Morena zone and related areas of the Iberian Massif. Geological Society of America Bulletin, 112(9), 1398–1413. https ://doi.org/10.1130/0016-7606(2000)112%3c139 8:SHACO C%3e2.0.CO;2.
  • Farias, P., Gallastegui, G., González-Lodeiro, F., Marquínez, J., Martín Parra, L.M., Martínez Catalán, J.R., Pablo Maciá, J.G. de & Rodríguez Fernández, L.R., (1987). Aportaciones al conocimiento de la litoestratigrafía y estructura de Galicia central 1. Memórias da Faculdade de Ciências, Universidade do Porto (pp. 411–431).
  • Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921–924. https ://doi.org/10.1130/0091-7613(1995)023%3c092 1:UTEOP M%3e2.3.CO;2.
  • Fernández-Suárez, J., Corfu, F., Arenas, R., Marcos, A., Martínez Catalán, J. R., Díaz García, F., et al. (2002a). U–Pb evidence for a polyorogenic evolution of the HP-HT units of the NW Iberian Massif. Contributions to Mineralogy and Petrology, 143, 236–253. https ://doi.org/10.1007/s0041 0-001-0337-2.
  • Fernández-Suárez, J., Díaz García, F., Jeffries, T. E., Arenas, R., & Abati, J. (2003). Constraints on the provenance of the uppermost allochthonous terrane of the NW Iberian Massif: Inferences from detrital zircon U–Pb ages. Terra Nova, 15, 138–144. https ://doi. org/10.1046/j.1365-3121.2003.00479 .x.
  • Fernández-Suárez, J., Gutiérrez-Alonso, G., & Jeffries, T. E. (2002b). The importance of along-margin terrane transport in northern Gondwana: Insights from detrital zircon parentage in Neoproterozoic rocks from Iberia and Brittany. Earth and Planetary Science Letters, 204(1–2), 75–88. https ://doi.org/10.1016/S0012 -821X(02)00963 -9.
  • Fernández-Suárez, J., Gutiérrez-Alonso, G., Jenner, G. A., & Tubrett, M. N. (2000). New ideas on the Proterozoic-Early Paleozoic evolution of NW Iberia: Insights from U–Pb detrital zircon ages. Precambrian Research, 102, 185–206. https ://doi.org/10.1016/ S0301 -9268(00)00065 -6.
  • Fernández-Suárez, J., Gutiérrez-Alonso, G., Pastor-Galán, D., Hofmann, M., Murphy, J. B., & Linnemanm, U. (2014). The Ediacaran- Early Cambrian detrital zircon record of NW Iberia: Possible sources and paleogeographic constraints. International Journal of Earth Sciences, 103(5), 1335–1357. https ://doi.org/10.1007/ s0053 1-013-0923-3.
  • Floyd, P. A., & Leveridge, B. E. (1987). Tectonic environment of the Devonian Gramscatho Basin, South Cornwall: Framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society, 144(4), 531–542. https ://doi.org/10.1144/ gsjgs .144.4.0531.
  • Fralick, P. W., & Kronberg, B. I. (1997). Geochemical discrimination of clastic sedimentary rock sources. Sedimentary Geology, 113(1– 2), 111–124. https ://doi.org/10.1016/S0037 -0738(97)00049 -3.
  • Franke, W., (1989). Tectonostratigraphic units in the Variscan belt of central Europe. In R.D Dallmeyer (Ed.), Terranes in the Circum- Atlantic Paleozoic Orogens (pp. 67–90) Geological Society of America Special Paper. https ://doi.org/10.1130/SPE23 0-p67.
  • Fricke, W., (1941). Die Geologie des Grenxebietes zwischen nordöstlicher Sierra Morena und Extremadura. Phd Thesis. University of Berlin (pp. 91) Berlin: Germany.
  • Fuenlabrada, J. M., Arenas, R., Díez Fernández, R., Sánchez Martínez, S., Abati, J., & López Carmona, A. (2012). Sm–Nd isotope geochemistry and tectonic setting of the metasedimentary rocks from the basal allochthonous units of NW Iberia (Variscan suture, Galicia). Lithos, 148, 196–208. https ://doi.org/10.1016/j.litho s.2012.06.002.
  • Fuenlabrada, J. M., Arenas, R., Sánchez Martínez, S., Díaz García, F., & Castiñeiras, P. (2010). A peri-Gondwanan arc in NW Iberia I: Isotopic and geochemical constraints on the origin of the arc—a sedimentary approach. Gondwana Research., 17, 338–351. https ://doi.org/10.1016/j.gr.2009.09.007.
  • Fuenlabrada, J. M., Arenas, R., Sánchez Martínez, S., Díez Fernández, R., Pieren, A. P., Pereira, M. F., et al. (2020). Geochemical and isotopic (Sm–Nd) provenance of Ediacaran–Cambrian metasedimentary series from the Iberian Massif. Paleoreconstruction of the North Gondwana margin. Earth-Science Reviews, 201, 103079.
  • Fuenlabrada, J. M., Pieren, A. P., Díez Fernández, R., Sánchez Martínez, S., & Arenas, R. (2016). Geochemistry of the Ediacaran- Early Cambrian transition in Central Iberia: Tectonic setting and isotopic sources. Tectonophysics, 681, 15–30. https ://doi. org/10.1016/j.tecto .2015.11.013.
  • Garcia, D., Coelho, J., & Perrin, M. (1991). Fractionation between TiO2 and Zr as a measure of sorting within shale and sandstone series (Northern Portugal). European Journal of Mineralogy, 3(2), 401–414. https ://doi.org/10.1127/ejm/3/2/0401.
  • Garrote, A. (1976). Asociaciones minerales del núcleo metamórfico de Sierra Albarrana (prov. de Córdoba). Sierra Morena Central. Memorias e Noticias, publ Mus. Lab. Mineral. Geol. Univ. Coímbra, 82, 17–39.
  • Garrote, A., Ortega Huertas, M. & Romero, J., (1980). Los yacimientos de pegmatitas de Sierra Albarrana (Provincia de Córdoba, Sierra Morena). 1ª Reunión sobre la geología de Ossa-Morena. Temas Geológicos Mineros (pp. 145–168) Madrid: IGME.
  • González del Tánago, J., (1995). El núcleo metamórfico de sierra albarrana y su campo de pegmatitas graníticas asociado, macizo Ibérico, Córdoba, España. Ediciós do Castro, Sada, serie Nova Terra 12 (pp. 511).
  • González del Tánago, J., & Arenas, R. (1991). Anfibolitas granatíferas de Sierra Albarrana (Córdoba). Termobarometría e implicaciones para el desarrollo del metamorfismo regional. Revista de la Sociedad Geológica de España, 4, 251–269.
  • González del Tánago, J., & Peinado, M. (1990). Contribución al estudio del metamorfismo de Sierra Albarrana (Z.O.M., Córdoba, España). Boletín Geológico y Minero, 101, 18–40.
  • Gutiérrez-Marco, J. C., San José, M. A. & Pieren, A. P. (1990) Central- Iberian Zone, Autochthonous sequences: Post-Cambrian Palaeozoic Stratigraphy. In R.D. Dallmeyer & E. Martínez García (Eds.), Pre-Mesozoic Geology of Iberia (pp. 160–171) Berlin: Springer. https ://doi.org/10.1007/978-3-642-83980 -1_14.
  • Henderson, B. J., Collins, W. J., Murphy, J. B., Gutierrez-Alonso, G., & Hand, M. (2016). Gondwanan basement terranes of the Variscan-Appalachian orogen: Baltican, Saharan and West African hafnium isotopic fingerprints in Avalonia, Iberia and the Armorican Terranes. Tectonophysics, 681, 278–304. https :// doi.org/10.1016/j.tecto .2015.11.020.
  • Herron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research, 58, 820–829. https ://doi.org/10.1306/212F8E 77-2B24-11D7-86480 00102 C1865 D.
  • Hiscott, R. N. (1984). Ophiolitic source rocks for Taconic-age flysch: Trace-element evidence. Geological Society of America Bulletin, 95, 1261–1267. https ://doi.org/10.1130/0016-7606(1984)95%3c126 1:OSRFT F%3e2.0.CO;2.
  • Insúa, M., Carvajal, A., Huerta, J. & Matas, J., (1990). Memoria de la Hoja no 900 (La Cardenchosa). Mapa Geológico de España E. 1:50.000 (MAGNA), Segunda Serie, Primera edición. IGME (pp. 80). Depósito legal: M-22390-2007. ISBN: 978-84-7840-685-2
  • Jacobsen, S. B., & Wasserburg, G. J. (1980). Sm–Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 50, 139–155. https ://doi.org/10.1016/0012-821X(80)90125 -9.
  • Jensen, S., Palacios, T., & Eguíluz, L. (2004). Cambrian ichnofabrics from the Ossa Morena and Central Iberian zones: Preliminary results. Geo-temas, 6(2), 291–293.
  • Julivert, M., Fontboté, J.M., Ribeiro, A. & Conde, L., (1972). Mapa Tectónico de la Península Ibérica y Baleares E. 1:1.000.000. Instituto Geológico y Minero de España, Madrid. Depósito Legal: M-21994-1972.
  • Kroner, U., & Romer, R. L. (2013). Two plates—many subduction zones: The Variscan orogeny reconsidered. Gondwana Research, 24, 298–329. https ://doi.org/10.1016/j.gr.2013.03.001.
  • Liñán, E., (1978). Bioestratigrafía de la Sierra de Córdoba [PhD]: Universidad de Granada (pp. 212).
  • Liñán, E. (1984). Los icnofósiles de la Formación Torreárboles (¿Precámbrico?-Cámbrico Inferior) en los alrededores de Fuente de Cantos, Badajoz. Cuadernos do Laboratorio Xeoloxico de Laxe, 8, 47–74.
  • Liñán, E., & Palacios, T. (1983). Aportaciones micropaleontológicas para el conocimiento del límite Precámbrico-Cámbrico en la Sierra de. Córdoba, España. Comunicações dos Serviços Geológicos de Portugal, 69, 227–234.
  • Liñán, E., Palacios, T., & Perejón, A. (1984). Precambrian–Cambrian boundary and correlation from southwestern and central part of Spain. Geological Magazine, 121(03), 221–228. https ://doi. org/10.1017/S0016 75680 00282 84.
  • Liñán, E., & Quesada, C. (1990). Ossa-Morena Zone: 2. Stratigraphy. Rift phase. In R. D. Dallmeyer & E. Martínez García (Eds.), Pre-mesozoic geology of Iberia (pp. 259–266). Berlin: Springer.
  • Linnemann, U., Gerdes, A., Drost, K. & Buschmann, B., (2007). The continuum between Cadomian orogenesis and opening of the Rheic Ocean: Constraints from LA-ICP–MS U–Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). In U. Linnemann, R.D. Nance, P. Kraft & G. Zulauf (Eds.), The evolution of the Rheic Ocean: From Avalonian–Cadomian Active Margin to Alleghenian–Variscan Collision. 423. (pp. 61–96) Geological Society of America Special Paper. Boulder Colorado. https ://doi. org/10.1130/2007.2423(03).
  • Linnemann, U., Gerdes, A., Hofmann, M., & Marko, L. (2014). The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—Constraints from U–Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Research, 244, 236–278. https ://doi.org/10.1016/j.preca mres.2013.08.007.
  • Linnemann, U., Pereira, F., Jeffries, T. E., Drost, K., & Gerdes, A. (2008). The Cadomian Orogeny and the opening of the Rheic Ocean: The diacrony of the geotectonic processes constrained by LA-ICP–MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian zones, Iberian and Bohemian massifs). Tectonophysics, 461(1–4), 21–43. https ://doi.org/10.1016/j.tecto .2008.05.002.
  • Linnemann, U., & Romer, R. L. (2002). The Cadomian Orogeny in Saxo-Thuringia, Germany: Geochemical and Nd–Sr–Pb isotopic characterization of marginal basins with constraints to geotectonic setting and provenance. Tectonophysics, 352, 33–64. https ://doi.org/10.1016/S0040 -1951(02)00188 -9.
  • López Guijarro, R., (2006). Ambiente geodinámico y procedencia de las rocas sedimentarias precámbricas de las zonas de Ossa Morena y Centroibérica a través del análisis geoquímico. Boletín Geológico y Minero, 117 (Núm. Monográfico Especial): 499– 505. ISSN: 0366-0176.
  • López Guijarro, R., Armendariz, M., Quesada, C., Fernández-Suárez, J., Murphy, J. B., Pin, C., & Bellido, F. (2008). Ediacaran-Palaeozoic tectonic evolution of the Ossa Morena and Central Iberian zones (SW Iberia) as revealed by Sm–Nd isotope systematics. Tectonophysics, 461(1–4), 202–214. https ://doi.org/10.1016/j. tecto .2008.06.006.
  • Lotze, F. (1945). Zur gliederung der varisziden der iberischen meseta. Geotekt Forsch, 6, 78–92.
  • Lugmair, G. W., & Marti, K. (1978). Lunar initial 143Nd/144Nd differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39, 349–357. https ://doi.org/10.1016/0012-821X(78)90021 -3.
  • IGME, (2015). Mapa geológico de España y Portugal E: 1.1000.000. Instituto Geológico y Minero de España, Madrid. Depósito Legal: M-35958-2014
  • Marcos, A., Azor, A., González Lodeiro, F., & Simancas, F. (1991). Early Phanerozoic trace fossils from the Sierra Albarrana Quartzites (Ossa-Morena Zone, Southwest Spain). Scripta Geologica, 97, 47–53.
  • Martín Parra, L. M., González Lodeiro, F., Martínez Poyatos, D., & Matas, J. (2006). The Puente Génave-Castelo de Vide Shear Zone (southern Central Iberian Zone, Iberian Massif): geometry, kinematics and regional implications. Bulletin de la Société Géologique de France, 177, 191–202. https ://doi.org/10.2113/ gssgf bull.177.4.191.
  • Martínez Catalán, J. R., Arenas, R., Abati, J., Sánchez Martínez, S., Díaz García, F., Fernández-Suárez, J., et al. (2009). A rootless suture and the loss of the roots of a mountain chain: The Variscan belt of NW Iberia. Comptes Rendus Geoscience, 341(2–3), 114–126. https ://doi.org/10.1016/j.crte.2008.11.004.
  • Martínez Catalán, J. R., Arenas, R., Díaz García, F., & Abati, J. (1997). Variscan accretionary complex of northwest Iberia: Terrane correlation and succession of tectonothermal events. Geology, 25, 1103–1106. https ://doi.org/10.1130/0091-7613(1997)025%3c110 3:VACON I%3e2.3.CO;2.
  • Martínez Catalán, J.R., Arenas, R., Díaz García, F., Gómez Barreiro, J., González Cuadra, P., Abati, J., Castiñeiras, P., Fernández- Suárez, J., Sánchez Martínez, S., Andonaegui, P., González Clavijo, E., Díez Montes, A., Rubio Pascual, F.J. & Valle Aguado, B., (2007). Space and time in the tectonic evolution of the northwestern Iberian Massif. Implications for the Variscan belt. In R.D. Hatcher, M.P. Carlson, J.H. Mcbride & J.R. Martínez Catalán (Eds.), 4-D Framework of Continental Crust. (pp. 403–423) Geological Society of America Memoir, Boulder, Colorado. https ://doi.org/10.1130/2007.1200(21).
  • Martínez Catalán, J. R., Collett, S., Schulmann, K., Aleksandrowski, P., & Mazur, S. (2020). Correlation of allochthonous terranes and major tectonostratigraphic domains between NW Iberia and the Bohemian Massif, European Variscan belt. International Journal of Earth Sciences (Geol Rundsch), 109, 1105– 1131. https ://doi.org/10.1007/s0053 1-019-01800 -z.
  • Martínez Poyatos, D., (1997). Estructura del Borde Meridional de la Zona Centroibérica y su Relación con el Contacto entre las Zonas Centroibérica y de Ossa-Morena. Tesis Doct., Univ. Granada (pp. 222).
  • Matte, P. (1991). Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics, 196, 309– 337. https ://doi.org/10.1016/0040-1951(91)90328 -P.
  • McLennan, S. M. (1989). Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Mineralogical Society of America, Review in Mineralogy, 21, 169–200.
  • McLennan, S. M., & Hemming, S. (1992). Samarium/neodymium elemental and isotopic systematics in sedimentary rocks. Geochimica et Cosmochimica Acta, 56(3), 887–898. https ://doi. org/10.1016/0016-7037(92)90034 -G.
  • McLennan, S.M., Hemming, S.R., McDaniel, D.K. & Hanson, G.N., (1993). Geochemical approaches to sedimentation, provenance and tectonics. In M.J. Johnssons & A. Basu (Eds.), Processes controlling the composition of clastic sediments. Geological Society of America Spec. Pap. 284, (pp. 21–40). https ://doi. org/10.1130/SPE28 4-p21.
  • McLennan, S. M., & Taylor, S. R. (1991). Sedimentary rocks and crustal evolution: tectonic settings and secular trends. Journal of Geology, 99, 1–21.
  • McLennan, S. M., Taylor, S. R., & Hemming, S. R. (2006). Composition, differentiation, and evolution of continental crust: constrains from sedimentary rocks and heat flow. In M. Brown & T. Rushmer (Eds.), Evolution and differentiation of the continental crust (pp. 92–134). Cambridge: Cambridge University Press.
  • Mielke, J.E., (1979). Composition of the Earth’s crust and distribution of the elements. In: F. R. Siegel (Ed.), Review of research on modern problems in geochemistry. International Association for Geochemistry and Cosmochemistry. Earth Science Series No. 16. UNESCO Report SC/GEO/544/3, Paris, (pp. 13–37).
  • Moita, P., Munhá, J., Fonseca, P.E., Pedro, J., Tassinari, C.C.G., Araújo, A. & Palacios, T., (2005). Phase equilibria and geochronology of Ossa-Morena eclogites, XIV Semana de Geoquímica, VIII Congresso de Geoquímica dos Países de Língua Portuguesa, pp. 463-466.
  • Morag, N., Avigad, D., Gerdes, A., Belousova, E., & Harlavan, Y. (2011). Detrital zircon Hf isotopic composition indicates longdistance transport of North Gondwana Cambrian–Ordovician sandstones. Geology, 39, 955–958. https ://doi.org/10.1130/ G3218 4.1.
  • Murphy, J. B., & Nance, R. D. (1989). Model for the evolution of the Avalonian-Cadomian belt. Geology, 17(8), 735–738. https ://doi.org/10.1130/0091-7613(1989)017%3c073 5:MFTEO T%3e2.3.CO;2.
  • Nägler, T. F., Schiller, H. J., & Gebauer, D. (1995). Evolution of the Western European continental crust: implications from Nd and Pb isotopes in Iberian sediments. Chemical Geology, 121, 345– 357. https ://doi.org/10.1016/0009-2541(94)00129 -V.
  • Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38, 757–775. https ://doi.org/10.1016/0016-7037(74)90149 -5.
  • Nance, R. D., Gutiérrez-Alonso, G., Keppi, J. D., Linnemann, U., Murphy, J. B., Quesada, C., et al. (2010). Evolution of the Rheic Ocean. Gondwana Research, 17(2–3), 194–222. https ://doi. org/10.1016/j.gr.2009.08.001.
  • Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717. https ://doi.org/10.1038/29971 5a0.
  • O’Nions, R. K., Carter, S. R., Evensen, N. M., & Hamilton, P. J. (1979). Geochemical and cosmochemical applications of Nd isotope analysis. Annual Review of Earth and Planetary Sciences, 7, 11–38.
  • Ordoñez Casado, B., Gebauer, D., & Eguíluz, L. (2009). Zircon ionprobe dating the maximum age of deposition of the Montemolín succession (Lower Serie Negra) in the Ossa Morena Zone, Spain. Macla, 11, 137–138.
  • Ordóñez-Casado, B., Gebauer, D., & Eguiluz, L. (1998). SHRIMP age-constraints for the calc-alkaline volcanism in the Olivenza- Monesterio Antiform (Ossa-Morena, SW Spain). Mineralogical Magazine, 62A(2), 1112–1113. https ://doi.org/10.1180/minma g.1998.62A.2.248.
  • Orejana, D., Merino Martínez, E., Villaseca, C., & Andersen, T. (2015). Ediacaran–Cambrian paleogeography and geodynamic setting of the Central Iberian Zone: Constraints from coupled U–Pb–Hf isotopes of detrital zircons. Precambrian Research, 261, 234–251. https ://doi.org/10.1016/j.preca mres.2015.02.009.
  • Pastor-Galán, D., Gutiérrez-Alonso, G., Fernández-Suárez, J., Murphy, J. B., & Nieto, F. (2013). Tectonic evolution of NW Iberia during the Paleozoic inferred from the geochemical record of detrital rocks in the Cantabrian Zone. Lithos, 182–183, 211–228. https ://doi.org/10.1016/j.litho s.2013.09.007.
  • Pereira, M. F. (2015). Potential sources of Ediacaran strata of Iberia: A review. Geodinamica Acta, 27(1), 1–14. https ://doi. org/10.1080/09853 111.2014.957505.
  • Pereira, M. F., Chichorro, M., Linnemann, U., Eguiluz, L., & Silva, J. B. (2006). Inherited arc signature in Ediacaran and Early Cambrian basins of the Ossa-Morena Zone (Iberian Massif, Portugal): Paleogeographic link with European and North African Cadomian correlatives. Precambrian Research, 144(3–4), 297–315. https ://doi.org/10.1016/j.preca mres.2005.11.011.
  • Pereira, M.F., Chichorro, M., Williams, I.S. & Silva, J.B., (2008). Zircon U–Pb geochronology of paragneisses and biotite granites from the SW Iberian Massif (Portugal): Evidence for a paleogeographic link between the Ossa-Morena Ediacaran basins and the West African craton. In: J.P. Liégeois & E. Nasser (Eds.), The boundaries of the West African Craton. Geological Society of London Special Publication, 297 (pp. 385–408). https ://doi.org/10.1144/SP297 .18.
  • Pereira, M. F., El Houicha, M., Chichorro, M., Armstrong, R., Jouhari, A., El Attari, A., et al. (2015). Evidence of a Paleoproterozoic basement in the Moroccan Variscan Belt (Rehamna Massif, Western Meseta). Precambrian Research, 268, 61–73. https ://doi.org/10.1016/j.preca mres.2015.07.010.
  • Pereira, M.F., Gama, C., Dias da Silva, I., Fuenlabrada, J.M., Brandão Silva, J. & Medina, J., (2020). Isotope geochemistry evidence for Laurussian-type sources of South-Portuguese Zone Carboniferous turbidites (Variscan orogeny) Geological Society, London, Special Publications, 503. https ://doi. org/10.1144/SP503 -2019-163.
  • Pereira, M. F., Linnemann, U., Hofmann, M., Chichorro, M., Solá, A. R., Medina, J., & Silva, J. B. (2012a). The provenance of Late Ediacaran and Early Ordovician siliciclastic rocks in the Southwest Central Iberian Zone: Constraints from detrital zircon data on northern Gondwana margin evolution during late Neoproterozoic. Precambrian Research, 192–195, 166–189. https ://doi.org/10.1016/j.preca mres.2011.10.019.
  • Pereira, M. F., Solá, A. R., Chichorro, M., Lopes, L., Gerdes, A., & Silva, J. B. (2012b). North Gondwana assembly, break-up and paleogeography: U–Pb isotope evidence from detrital and igneous zircons of Ediacaran and Cambrian rocks of SW Iberia. Gondwana Research, 22(3–4), 866–881. https ://doi. org/10.1016/j.gr.2012.02.010.
  • Pérez Estaún, A., Bea, F., Marcos, A., Martínez Catalán, J.R., Martínez Poyatos, D., Arenas, R., Díaz García, F., Azor, A., Simancas, F. & González Lodeiro, F., (2004). In J.A. Vera, (Ed.) La cordillera varisca europea: el Macizo ibérico En: Geología de España (pp. 21–25) Madrid: SGE-IGME.
  • Pieren Pidal, A.P., (2000). Las sucesiones anteordovícicas de la región oriental de la provincial de Badajoz y área contigua de la de Ciudad Real. Thesis Universidad Complutense Madrid, Ph.D (pp. 379).
  • Quesada, C., (1990). Precambrian successions in SW Iberia: their relationships to Cadomian orogenic events. In R.S D’Lemos, R.A. Strachan & C.G. Topley (Eds.), The Cadomian Orogeny (pp. 353–362) Geological Society London, Special Publication 51. https ://doi.org/10.1144/GSL.SP.1990.051.01.23.
  • Quesada, C., Apalategui, O., Eguiluz, L., Liñán, E., & Palacios, T. (1990). Ossa-Morena zone: precambrian. In R. D. Dallmeyer & E. Martínez-García (Eds.), Pre-mesozoic geology of Iberia (pp. 250–258). Berlin: Springer.
  • Ribeiro, A., Munhá, J., Dias, R., Mateus, A., Pereira, E., Ribeiro, L., Fonseca, P., Araújo, A., Oliveira, T., Romão, J., Chaminé, H., Coke, C. & Pedro, J., (2007). Geodynamic evolution of the SW Europe Variscides. Tectonics, 26, TC6009. https ://doi. org/10.1029/2006T C0020 58.
  • Ries, A. C., & Shackleton, R. M. (1971). Catazonal complexes of north-west Spain and north Portugal, remnants of a Hercynian thrust plate. Nature Physical Science, 234, 65–68. https ://doi. org/10.1038/physc i2340 65a0.
  • Robardet, M., (1976): L’originalité du segment hercynien sudibérique au Paléozoïque inférieur: Ordovicien, Silurien et Dévonien dans le nord de la province de Séville (Espagne). Comptes Rendus de l’Académie des Sciences, Paris, 283, série D (pp. 999–1002).
  • Rodríguez Alonso, M.D., Díez Balda, M.A., Perejón, A., Pieren, A., Liñán, E., López Díaz, F., Moreno, F., Gámez Vintaned, J.A., González Lodeiro, F., Martínez Poyatos, D. & Vegas, R., (2004a). Dominio del Complejo esquisto-grauváquico. Estratigrafía. La secuencia litoestratigráfica del Neoproterozoico– Cámbrico inferior. In J.A Vera (Ed.), Geología de España. Sociedad Geológica de España-Instituto Geológico y Minero de España, Madrid, (pp. 78–81).
  • Rodríguez Alonso, M. D., Peinado, M., López-Plaza, M., Franco, P., Carnicero, A., & Gonzalo, J. C. (2004b). Neoproterozoic- Cambrian synsedimentary magmatism in the Central Iberian Zone (Spain): Geology, petrology and geodynamic significance. International Journal of Earth Sciences, 93, 897–920. https :// doi.org/10.1007/s0053 1-004-0425-4.
  • Rojo-Pérez, E., Arenas, R., Fuenlabrada, J. M., Sánchez Martínez, S., Martín Parra, L. M., Matas, J., et al. (2019). Contrasting isotopic sources (Sm–Nd) of Late Ediacaran series in the Iberian Massif: Implications for the Central Iberian–Ossa Morena boundary. Precambrian Research, 324, 194–207. https ://doi.org/10.1016/j. preca mres.2019.01.021.
  • Rojo-Pérez, E., Fuenlabrada, J.M., Linnemann, U., Arenas, R., Sánchez Martínez, S., Díez Fernández, R., Martín Parra, L.M., Matas, J., Andonaegui, P. & Fernández-Suárez, J., (submitted). Geochemistry and Sm–Nd isotopic sources of Late Ediacaran siliciclastic series in the Ossa-Morena Complex: Iberian-Bohemian correlations. International Journal of Earth Sciences.
  • Rubio Pascual, F. J., Matas, J., & Martín Parra, L. M. (2013). Highpressure metamorphism in the Early Variscan subduction complex of the SW Iberian Massif. Tectonophysics, 592, 187–199. https ://doi.org/10.1016/j.tecto .2013.02.022.
  • San José, M. A., Pieren, A. P., García Hidalgo, F. J., Vilas, L., Herranz, P., Peláez, J. R., & Perejón, A. (1990). Central Iberian Zone: Ante-Ordovician stratigraphy. In R. D. Dallmeyer & E. Martínez García (Eds.), Pre-Mesozoic Geology of Iberia (pp. 147–159). Berlin Heidelberg New York: Springer.
  • Sánchez Carretero, R., Carracedo, M., Eguíluz, L., & Apalategui, O. (1989). El magmatismo calcoalcalino del Precámbrico terminal en la Zona de Ossa-Morena (Macizo Ibérico). Revista de la Sociedad Geológica de España, 2, 7–21.
  • Sánchez García, T., Quesada, C., Bellido, F., Dunning, G. R., & González del Tánago, J. (2008). Two-step magma flooding of the upper crust during rifting: The Early Paleozoic of the Ossa Morena Zone (SW Iberia). Tectonophysics, 461, 72–90. https :// doi.org/10.1016/j.tecto .2008.03.006.
  • Sánchez Martínez, S., Arenas, R., Albert, R., Gerdes, A. & Fernández- Suárez, J., (2020) Updated geochronology and isotope geochemistry of the Vila de Cruces Ophiolite: A case study of a peri-Gondwanan back-arc ophiolite. Geological Society, London, Special Publications, 503. https ://doi.org/10.1144/SP503 -2020-8.
  • Sánchez-García, T., Chichorro, M., Solá, A.R., Álvaro, J.J., Díez- Montes, A., Bellido, F., Ribeiro, M.L., Quesada, C., Lopes, J.C., Dias da Silva, Í., González-Clavijo, E., Gómez Barreiro, J. & López-Carmona, A., (2019). The Cambrian-Early Ordovician Rift Stage in the Gondwanan Units of the Iberian Massif. In C. Quesada & J. Oliveira (Eds), The Geology of Iberia: A Geodynamic Approach. Regional Geology Reviews. Cham: Springer. https ://doi.org/10.1007/978-3-030-10519 -8_2.
  • Sánchez-García, T., Pereira, M. F., Bellido, F., Chichorro, M., Silva, J. B., Valverde-Vaquero, P., et al. (2014). Early Cambrian granitoids of North Gondwana margin in the transition from a convergent setting to intra-continental rifting (Ossa-Morena Zone, SW Iberia). International Journal of Earth Sciences (Geol Rundsch), 103, 1203–1218. https ://doi.org/10.1007/s0053 1-013-0939-8.
  • Schäfer, H.-J., Gebauer, D., Nägler, T. F., & Eguiluz, L. (1993). Conventional and ion-microprobe U–Pb dating of detrital zircons of the Tentudía Group (Serie Negra, SW Spain): Implications for zircon systematics, stratigraphy, tectonics and the Precambrian/ Cambrian boundary. Contributions to Mineralogy and Petrology, 113(3), 289–299. https ://doi.org/10.1007/BF002 86922 .
  • Simancas, J. F., Azor, A., Martínez-Poyatos, D., Tahiri, A., El Hadi, H., González-Lodeiro, F., et al. (2009). Tectonic relationships of Southwest Iberia with the allochthons of Northwest Iberia and the Moroccan Variscides. Comptes Rendus Geoscience, 341, 103–113. https ://doi.org/10.1016/j.crte.2008.11.003.
  • Simancas, J. F., Galindo-Zaldivar, J., & Azor, A. (2000). Three-dimensional shape and emplacement of the Cardenchosa deformed pluton (Variscan Orogen, southwestern Iberian Massif). Journal of Structural Geology, 22(4), 489–503.
  • Stampfli, G. M., Hochard, C., Vérard, C., Wilhem, C., & von Raumer, J. (2013). The formation of Pangea. Tectonophysics, 593, 1–19. https ://doi.org/10.1016/j.tecto .2013.02.037.
  • Stampfli, G.M., von Raumer, J. & Borel, G.D., (2002). Paleozoic evolution of pre-Variscan terranes: from Gondwana to the Variscan collision. In J.R Martínez Catalán, R.D. Hatcher Jr., R. Arenas & F. Díaz García, (Eds.), Variscan-Appalachian Dynamics: The Building of the Late Paleozoic Basement. Geological Society of America Special Paper vol. 364, (pp. 263–280). https ://doi. org/10.1130/0-8137-2364-7.263.
  • Stephan, T., Kroner, U., & Romer, R. L. (2019b). The pre-orogenic detrital zircon record of the Peri-Gondwanan crust. Geological Magazine, 156(2), 281–307. https ://doi.org/10.1017/S0016 75681 80000 31.
  • Stephan, T., Kroner, U., Romer, R. L., & Rösel, D. (2019a). From a bipartite Gondwanan shelf to an arcuate Variscan belt: The early Paleozoic evolution of northern Peri-Gondwana. Earth- Science Reviews, 192, 491–512. https ://doi.org/10.1016/j.earsc irev.2019.03.012.
  • Stern, R. J. (2002). Crustal evolution in the East African Orogen: A neodymium isotopic perspective. Journal of African Earth Sciences, 34(3–4), 109–117. https ://doi.org/10.1016/S0899 -5362(02)00012 -X.
  • Talavera, C., Montero, P., Bea, F., González Lodeiro, F., & Whitehouse, M. (2013). U–Pb Zircon geochronology of the Cambro– Ordovician metagranites and metavolcanic rocks of central and NW Iberia. International Journal of Earth Sciences, 102, 1–23. https ://doi.org/10.1007/s0053 1-012-0788-x.
  • Talavera, C., Montero, P., Martínez Poyatos, D., & Williams, I. S. (2012). Ediacaran to Lower Ordovician age for rocks ascribed to the Schist–Graywacke Complex (Iberian Massif, Spain): Evidence from detrital zircon SHRIMP U–Pb geochronology. Gondwana Research, 22, 928–942. https ://doi.org/10.1016/j. gr.2012.03.008.
  • Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., et al. (2000). JNdi-1: A neodymium isotopic reference in consistency with La Jolla neodymium. Chemical Geology, 168, 279–281. https ://doi.org/10.1016/S0009 -2541(00)00198 -4.
  • Taylor, S.R. & McLennan, S.M., (1985). The Continental Crust: Its Composition and Evolution. Blackwell, Oxford (pp. 312). ISBN- 13: 978-0632011483.
  • Taylor, S.R. & McLennan, S.M., (1988). The significance of the rare earths in geochemistry and cosmochemistry, Handbook on the Physics and Chemistry of Rare Earths, Elsevier, Vol 11, (pp.485–578). ISSN 0168-1273, ISBN 9780444870803. https ://doi. org/10.1016/S0168 -1273(88)11011 -8.
  • Ugidos, J. M., Billström, K., Valladares, M. I., & Barba, P. (2003a). Geochemistry of the Upper Neoproterozoic and Lower Cambrian siliciclastic rocks and U–Pb dating on detrital zircons in the Central Iberian Zone, Spain. International Journal of Earth Sciences, 92, 661–676. https ://doi.org/10.1007/s0053 1-003-0355-6.
  • Ugidos, J. M., Valladares, M. I., Barba, P., & Ellam, R. M. (2003b). The Upper Neoproterozoic-Lower Cambrian of the Central Iberian Zone, Spain: Chemical and isotopic (Sm–Nd) evidence that the sedimentary succession records an inverted stratigraphy of its source. Geochimica et Cosmochimica Acta, 67, 2615–2629. https ://doi.org/10.1016/S0016 -7037(03)00027 -9.
  • Valladares, M. I., Barba, P., Ugidos, J. M., Colmenero, J. R., & Armenteros, I. (2000). Upper Neoproterozoic-Lower Cambrian sedimentary successions in the Central Iberian Zone (Spain): Sequence stratigraphy, petrology and chemostratigraphy. Implications for other European zones. International Journal of Earth Sciences, 89, 2–20.
  • Valladares, M. I., Ugidos, J. M., Barba, P., & Colmenero, J. R. (2002). Contrasting geochemical features of the Central Iberian Zone shales (Iberian Massif, Spain): Implications for the evolution of Neoproterozoic-Lower Cambrian sediments and their sources in other Peri-Gondwanan areas. Tectonophysics, 352, 121–132. https ://doi.org/10.1016/S0040 -1951(02)00192 -0.
  • Villaseca, C., Merino, E., Oyarzun, R., Orejana, D., Pérez-Soba, C., & Chicharro, E. (2014). Contrasting chemical and isotopic signatures from Neoproterozoic metasedimentary rocks in the Central Iberian Zone (Spain) of pre-Variscan Europe: Implications for terrane analysis and Early Ordovician magmatic belts. Precambrian Research, 245, 131–145. https ://doi.org/10.1016/j.preca mres.2014.02.006.
  • von Raumer, J. F., Stampfli, G. M., Borel, G. D., & Bussy, F. (2002). The organization of pre-Variscan basement areas at the Gondwana margin. International Journal of Earth Sciences, 91, 35–52. https ://doi.org/10.1007/s0053 10100 200.
  • von Raumer, J. F., Stampfli, G. A., & Bussy, F. (2003). Gondwanaderived microcontinents—the constituents of the Variscan and Alpine collisional orogens. Tectonophysics, 365, 7–22. https :// doi.org/10.1016/S0040 -1951(03)00015 -5.
  • Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock forming minerals. American Mineralogist, 95, 185–187. https ://doi.org/10.2138/am.2010.3371.
  • Winchester, J. A., & Floyd, P. A. (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325–343. https ://doi. org/10.1016/0009-2541(77)90057 -2.
  • Winchester, J. A., & Max, M. D. (1989). Tectonic setting discrimination in clastic sequences: An example from the late proterozoic Erris Group, NW Ireland. Precambrian Research, 45(1–3), 191– 201. https ://doi.org/10.1016/0301-9268(89)90039 -9.
  • Winchester, J.A., Pharaoh, T.C. & Verniers, J., (2002). Palaeozoic amalgamation of Central Europe: An introduction and synthesis of new results from recent geological and geophysical investigations. In J.A. Winchester, T.C. Pharaoh & J. Verniers (Eds.), Palaeozoic Amalgamation of Central Europe. Geological Society, London, Special Publications vol. 201, (pp. 1–18). https ://doi. org/10.1144/GSL.SP.2002.201.01.01.
  • Zhao, J. X., McCulloch, M. T., & Bennett, V. C. (1992). Sm–Nd and U–Pb zircon isotopic constraints on the provenance of sediments from the Amadeus Basin, central Australia: Evidence for REE fractionation. Geochimica et Cosmochimica Acta, 56(3), 921– 940. https ://doi.org/10.1016/0016-7037(92)90037 -J.