Challenges and Opportunities of Biologically Active Peptides in the Design and Formulation of Nutraceuticals and Functional Foods

  1. Elena Arranz 2
  2. Samuel Fernández-Tomé 2
  3. Blanca Hernández-Ledesma 1
  1. 1 Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI-UAM+CSIC), Madrid, Spain
  2. 2 Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
Buch:
Potential Health Benefits of Biologically Active Peptides Derived from Underutilized Grains: Recent Advances in their Isolation, Identification, Bioactivity and Molecular Analysis

Verlag: Bentham Science

ISBN: 9789815123340

Datum der Publikation: 2023

Seiten: 221-244

Art: Buch-Kapitel

DOI: 10.2174/9789815123340123040017 GOOGLE SCHOLAR lock_openOpen Access editor

Ziele für nachhaltige Entwicklung

Zusammenfassung

Consumer demand for products with health benefits beyond simple nutrition is the market driver for nutraceuticals and functional foods. The development of these products has been on the rise since the last decade as consumers became more aware of the consequences of lifestyle diseases. This scenario has also benefited from the growing economy, changing lifestyles and consumption patterns. Researchers and the food industry are exploring novel sources of bioactive components and attention has been given to underutilized grain proteins. This chapter aims to review the incorporation of underutilized grains into nutraceuticals and functional foods. The recent advances and challenges in food processing techniques to develop these products are presented. Moreover, comprehensive details on the improvement of product properties with the incorporation of underutilized grains, by means of nutritional, techno-functional and bioactivity, as well as sensorial analysis are given. Finally, the health promoting effects of peptides encrypted in the protein fraction of these grains will be discussed.

Bibliographische Referenzen

  • DeFelice S.L.; The nutraceutical revolution: its impact on food industry R
  • Daliu P.; Santini A.; Novellino E.; From pharmaceuticals to nutraceuticals: bridging disease prevention and management. Expert Rev Clin Pharmacol 2019,12(1),1-7
  • Hasler C.M.; Functional foods: benefits, concerns and challenges-a position paper from the american council on science and health. J Nutr 2002,132(12),3772-3781
  • Weststrate J.A.; van Poppel G.; Verschuren P.M.; Functional foods, trends and future. Br J Nutr 2002,88(S2)(Suppl. 2),S233-S235
  • Health Claims https://ec.europa.eu/food/safety/labelling_nutrition/claims/health_claims_en
  • https://www.grandviewresearch.com/industry-analysis/nutraceuticals-market
  • Bakshi A.; Chhabra S.; Kaur R.; Consumers’ attitudes toward functional Foods: A review. Curr Top Nutraceutical Res 2020,18(4),343-347
  • Villaño D.; Gironés-Vilapana A.; García-Viguera C.; Moreno D.A.; Innovation Strategies in the Food Industry 2022,193-207
  • Galanakis C.M.; Functionality of food components and emerging technologies. Foods 2021,10(1),128
  • Zhang Z.; Cho S.; Dadmohammadi Y.; Li Y.; Abbaspourrad A.; Improvement of the storage stability of C-phycocyanin in beverages by high-pressure processing. Food Hydrocoll 2021,110,106055
  • Chemat F.; Rombaut N.; Sicaire A.G.; Meullemiestre A.; Fabiano-Tixier A.S.; Abert-Vian M.; Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem 2017,34,540-560
  • Görgüç A.; Bircan C.; Yılmaz F.M.; Sesame bran as an unexploited by-product: Effect of enzyme and ultrasound-assisted extraction on the recovery of protein and antioxidant compounds. Food Chem 2019,283,637-645
  • Rabail R.; Khan M.R.; Mehwish H.M.; Rajoka M.S.R.; Lorenzo J.M.; Kieliszek M.; Khalid A.R.; Shabbir M.A.; Aadil R.M.; An overview of chia seed (Salvia hispanica L.) bioactive peptides’ derivation and utilization as an emerging nutraceutical food. Frontiers in Bioscience-Landmark 2021,26(9),643-654
  • Herrero M.; Sánchez-Camargo A.P.; Cifuentes A.; Ibáñez E.; Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. Trends Analyt Chem 2015,71,26-38
  • Olivera-Montenegro L.; Best I.; Gil-Saldarriaga A.; Effect of pretreatment by supercritical fluids on antioxidant activity of protein hydrolyzate from quinoa (Chenopodium quinoa Willd.). Food Sci Nutr 2021,9(1),574-582
  • Li X.; Shi J.; Scanlon M.; Xue S.J.; Lu J.; Effects of pretreatments on physicochemical and structural properties of proteins isolated from canola seeds after oil extraction by supercritical-CO process. Lebensm Wiss Technol 2021,137,110415
  • Banerjee R, Pund SV, Keshari R. Nutraceutical composition and method of production thereof. International Patent, 2021.
  • Chaudhary M.; Stealth, targeted nanoparticles (STN) for oral drug delivery. International Patent WO2016046845A4, 2016
  • Winnicki R.; Cannabinoid formulations. U.S. Patent US2018353463A1, 2018
  • Tosun F, Demirci B, Demirci F, Karadağ AE, Üstündağ Okur N. Development of microemulsion formulation from Rosmarinus officinalis essential oil and the antifungal effect of these formulations. International Patent 2021.
  • Limei Z, Shengfeng L, Huiyu C, Huimei C. Black mulberry-dried red date functional food and preparation method therefor. Chinese Patent CN111374282A, 2020.
  • Xuan M, Guandan W, Qian S, Xiaotong W. Method for improving nutritive value of chitosan functional food. Chinese Patent CN111607630A, 2020.
  • Gang H, Sirui F, Caimei Z, et al. Mushroom red yeast rice sauce functional food prepared by co-fermentation and preparation method thereof. Chinese Patent CN110973587A, 2020.
  • Yanling H, Rui S. Blueberry functional food pretreated by pulsed electric field and subjected to osmotic dehydration and air drying as well as preparation and application of blueberry functional food. Chinese Patent CN112690420A, 2021.
  • Zhijian Z, Ting Z, Shanshan Q, Hongxing Z. Konjac functional food and preparation method thereof. Chinese Patent CN111513273A, 2020.
  • Olagunju A.I.; Oluwajuyitan T.D.; Oyeleye S.I.; Multigrain bread: dough rheology, quality characteristics, in vitro antioxidant and antidiabetic properties. J Food Meas Charact 2021,15(2),1851-1864
  • Miranda-Ramos K.C.; Haros C.M.; Combined effect of chia, quinoa and amaranth incorporation on the physico-chemical, nutritional and functional quality of fresh bread. Foods 2020,9(12),1859
  • Temnikova O.E.; Rudenko E.Y.; Senchenko O.V.; Ruzyanova A.A.; Technology of functional bread using buckwheat flour. IOP Conf Ser Earth Environ Sci 2021,640(2),022002
  • Costantini L.; Lukšič L.; Molinari R.; Kreft I.; Bonafaccia G.; Manzi L.; Merendino N.; Development of gluten-free bread using tartary buckwheat and chia flour rich in flavonoids and omega-3 fatty acids as ingredients. Food Chem 2014,165,232-240
  • Giaretta D.; Lima V.A.; Carpes S.T.; Improvement of fatty acid profile in breads supplemented with Kinako flour and chia seed. Innov Food Sci Emerg Technol 2018,49,211-214
  • Miranda-Ramos K.; Millán-Linares M.C.; Haros C.M.; Effect of chia as breadmaking ingredient on nutritional quality, mineral availability, and glycemic index of bread. Foods 2020,9(5),663
  • Verdú S.; Vásquez F.; Ivorra E.; Sánchez A.J.; Barat J.M.; Grau R.; Physicochemical effects of chia (Salvia hispanica) seed flour on each wheat bread-making process phase and product storage. J Cereal Sci 2015,65,67-73
  • Eliseeva L.G.; Kokorina D.S.; Zhirkova E.V.; Nevskaya E.V.; Goncharenko O.A.; Othman A.J.; Using functional quinoa ingredients for enhancing the nutritional value of bakery products. IOP Conf Ser Earth Environ Sci 2021,640(2),022072
  • El-Sohaimy A S.; Shehata G M.; Djapparovec T.A.; Mehany T.; Zeitoun A M.; Zeitoun M A.; Development and characterization of functional pan bread supplemented with quinoa flour. J Food Process Preserv 2021,45(2),e15180
  • Lawal O.M.; Stuijvenberg L.; Boon N.; Awolu O.; Fogliano V.; Linnemann A.R.; Technological and nutritional properties of amaranth-fortified yellow cassava pasta. J Food Sci 2021,86(12),5213-5225
  • Valdez-Meza E.E.; Raymundo A.; Figueroa-Salcido O.G.; Ramírez-Torres G.I.; Fradinho P.; Oliveira S.; Sousa ; Suárez-Jiménez M.; Cárdenas-Torres F.I.; Islas-Rubio A.R.; Rodríguez-Olibarría G.; Ontiveros N.; Cabrera-Chávez F.; Pasta enrichment with an amaranth hydrolysate affects the overall acceptability while maintaining antihypertensive properties. Foods 2019,8(8),282
  • Cárdenas-Hernández A.; Beta T.; Loarca-Piña G.; Castaño-Tostado E.; Nieto-Barrera J.O.; Mendoza S.; Improved functional properties of pasta: Enrichment with amaranth seed flour and dried amaranth leaves. J Cereal Sci 2016,72,84-90
  • Fasuan T.O.; Anyiam C.C.; Ojokoh L.O.; Chima J.U.; Olagunju T.M.; Okpara K.O.; Asadu K.C.; Optimized spaghetti pasta from amaranth, partially deoiled sesame and modified sorghum starch composite: bioactive, nutritional and physico-functional characterization. Nutr Food Sci 2021,51(6),974-988
  • Ma Y.J.; Guo X.D.; Liu H.; Xu B.N.; Wang M.; Cooking, textural, sensorial, and antioxidant properties of common and tartary buckwheat noodles. Food Sci Biotechnol 2013,22(1),153-159
  • Levent H.; Effect of partial substitution of gluten-free flour mixtures with chia (Salvia hispanica L.) flour on quality of gluten-free noodles. J Food Sci Technol 2017,54(7),1971-1978
  • Rendón-Villalobos R.; Ortíz-Sánchez A.; Solorza-Feria J.; Trujillo-Hernández C.A.; Formulation, physicochemical, nutritional and sensorial evaluation of corn tortillas supplemented with chía seed (Salvia hispanica L.). Czech J Food Sci 2012,30(2),118-125
  • Ontiveros N.; López-Teros V.; Vergara-Jiménez M.J.; Islas-Rubio A.R.; Cárdenas-Torres F.I.; Cuevas-Rodríguez E-O.; Reyes-Moreno C.; Granda-Restrepo D.M.; Lopera-Cardona S.; Ramírez-Torres G.I.; Cabrera-Chávez F.; Amaranth-hydrolyzate enriched cookies reduce the systolic blood pressure in spontaneously hypertensive rats. J Funct Foods 2020,64,103613
  • Uriarte-Frías G.; Hernández-Ortega M.M.; Gutiérrez-Salmeán G.; Santiago-Ortiz M.M.; Morris-Quevedo H.J.; Meneses-Mayo M.; Pre-hispanic foods oyster mushroom (Pleurotus ostreatus), nopal (Opuntia ficus-indica) and amaranth (Amaranthus sp.) as new alternative ingredients for developing functional cookies. J Fungi (Basel) 2021,7(11),911
  • Bhatt S.; Kumari N.; Abhishek V.; Gupta M.; Elucidating the role of amaranth flour in formulation of gluten free black rice muffins and its premix: nutritional, physico-chemical and textural characteristics. J Food Meas Charact 2021,15(1),675-685
  • Natabirwa H.; Nakimbugwe D.; Lung’aho M.; Tumwesigye K.S.; Muyonga J.H.; Bean-based nutrient-enriched puffed snacks: Formulation design, functional evaluation, and optimization. Food Sci Nutr 2020,8(9),4763-4772
  • Matseychik I.V.; Korpacheva S.M.; Lomovsky I.O.; Serasutdinova K.R.; Influence of buckwheat by-products on the antioxidant activity of functional desserts. IOP Conf Ser Earth Environ Sci 2021,640(2),022038
  • Zieliński H.; Honke J.; Topolska J.; Bączek N.; Piskuła M.K.; Wiczkowski W.; Wronkowska M.; ACE inhibitory properties and phenolics profile of fermented flours and of baked and digested biscuits from buckwheat. Foods 2020,9(7),847
  • Zieliński H.; Szawara-Nowak D.; Wronkowska M.; Bioaccessibility of anti-AGEs activity, antioxidant capacity and phenolics from water biscuits prepared from fermented buckwheat flours. Lebensm Wiss Technol 2020,123,109051
  • Alcântara Brandão N.; Borges de Lima Dutra M.; Andrade Gaspardi A.L.; Segura Campos M.R.; Chia (Salvia hispanica L.) cookies: physicochemical/microbiological attributes, nutrimental value and sensory analysis. J Food Meas Charact 2019,13(2),1100-1110
  • Lucini Mas A.; Brigante F.I.; Salvucci E.; Pigni N.B.; Martinez M.L.; Ribotta P.; Wunderlin D.A.; Baroni M.V.; Defatted chia flour as functional ingredient in sweet cookies. How do Processing, simulated gastrointestinal digestion and colonic fermentation affect its antioxidant properties? Food Chem 2020,316,126279
  • Luna Pizarro P.; Almeida E.L.; Sammán N.C.; Chang Y.K.; Evaluation of whole chia (Salvia hispanica L.) flour and hydrogenated vegetable fat in pound cake. Lebensm Wiss Technol 2013,54(1),73-79
  • Syeda Shaista F.; Kabra S.; Effect of incorporating different amounts of chia to develop a nutritious Kulfi. Int J Sci Res 2015,6,1411-1413
  • Nduko J.M.; Maina R.W.; Muchina R.K.; Kibitok S.K.; Application of chia (Salvia hispanica) seeds as a functional component in the fortification of pineapple jam. Food Sci Nutr 2018,6(8),2344-2349
  • Beshir E.O.; Khallaf M.F.; Abd El-daim YA, Awad RA, Abdel-Azem KM. Sweet lupin and whey protein concentrate as supplementants for utilizing in semi–hard biscuit and its chemical properties. Egypt J Chem 2021,64,7517-7527
  • Mota J.; Lima A.; B Ferreira R.; Raymundo A.; Lupin seed protein extract can efficiently enrich the physical properties of cookies prepared with alternative flours. Foods 2020,9(8),1064
  • Malgor M.; Sabbione A.C.; Scilingo A.; Amaranth lemon sorbet, elaboration of a potential functional food. Plant Foods Hum Nutr 2020,75(3),404-412
  • Manassero C.A.; Añón M.C.; Speroni F.; Development of a high protein beverage based on amaranth. Plant Foods Hum Nutr 2020,75(4),599-607
  • Kowaleski J.; Quast L.B.; Steffens J.; Lovato F.; Rodrigues dos Santos L.; Zambiazi da Silva S.; Maschio de Souza D.; Felicetti M.A.; Functional yogurt with strawberries and chia seeds. Food Biosci 2020,37,100726
  • Kwon H.C.; Bae H.; Seo H.G.; Han S.G.; Short communication: Chia seed extract enhances physiochemical and antioxidant properties of yogurt. J Dairy Sci 2019,102(6),4870-4876
  • Bahmanyar F.; Hosseini S.M.; Mirmoghtadaie L.; Shojaee-Aliabadi S.; Effects of replacing soy protein and bread crumb with quinoa and buckwheat flour in functional beef burger formulation. Meat Sci 2021,172,108305
  • Antonini E.; Torri L.; Piochi M.; Cabrino G.; Meli M.A.; De Bellis R.; Nutritional, antioxidant and sensory properties of functional beef burgers formulated with chia seeds and goji puree, before and after in vitro digestion. Meat Sci 2020,161,108021
  • Leonard W.; Hutchings S.C.; Warner R.D.; Fang Z.; Effects of incorporating roasted lupin (Lupinus angustifolius) flour on the physicochemical and sensory attributes of beef sausage. Int J Food Sci Technol 2019,54(5),1849-1857
  • Ayala-Niño A.; Rodríguez-Serrano G.M.; Jiménez-Alvarado R.; Bautista-Avila M.; Sánchez-Franco J.A.; González-Olivares L.G.; Cepeda-Saez A.; Bioactivity of peptides released during lactic fermentation of Amaranth proteins with potential cardiovascular protective effect: an in vitro study. J Med Food 2019,22(10),976-981
  • Cabrera-Chávez F.; Lopez-Teros V.; Gutiérrez-Arzapalo P.Y.; Cárdenas-Torres F.I.; Rios-Burgueño E.R.; Astiazaran-Garcia H.; Murúa J.A.H.; González-Ochoa G.; Ramírez-Torres G.I.; Ontiveros N.; Antihypertensive effect of Amaranth hydrolysate is comparable to the effect of low-intensity physical activity. Appl Sci (Basel) 2020,10(16),5706
  • Mudgil P.; Omar L.S.; Kamal H.; Kilari B.P.; Maqsood S.; Multi-functional bioactive properties of intact and enzymatically hydrolysed quinoa and amaranth proteins. Lebensm Wiss Technol 2019,110,207-213
  • Ramírez-Torres G.; Ontiveros N.; Lopez-Teros V.; Ibarra-Diarte J.; Reyes-Moreno C.; Cuevas-Rodríguez E.; Cabrera-Chávez F.; Amaranth protein hydrolysates efficiently reduce systolic blood pressure in spontaneously hypertensive rats. Molecules 2017,22(11),1905
  • Barba de la Rosa A.P.; Barba Montoya A.; Martínez-Cuevas P.; Hernández-Ledesma B.; León-Galván M.F.; De León-Rodríguez A.; González C.; Tryptic amaranth glutelin digests induce endothelial nitric oxide production through inhibition of ACE: Antihypertensive role of amaranth peptides. Nitric Oxide 2010,23(2),106-111
  • Taniya M.S.; Mv R.; Ps S.; Krishnan G.; S P.; Bioactive peptides from amaranth seed protein hydrolysates induced apoptosis and antimigratory effects in breast cancer cells. Food Biosci 2020,35,100588
  • Tiengo A.; Faria M.; Netto F.M.; Characterization and ACE-inhibitory activity of amaranth proteins. J Food Sci 2009,74(5),H121-H126
  • Tovar-Pérez E.G.; Guerrero-Legarreta I.; Farrés-González A.; Soriano-Santos J.; Angiotensin I-converting enzyme-inhibitory peptide fractions from albumin 1 and globulin as obtained of amaranth grain. Food Chem 2009,116(2),437-444
  • Silva-Sánchez C.; de la Rosa A.P.B.; León-Galván M.F.; de Lumen B.O.; de León-Rodríguez A.; de Mejía E.G.; Bioactive peptides in amaranth (Amaranthus hypochondriacus) seed. J Agric Food Chem 2008,56(4),1233-1240
  • Jorge S-S.; Raúl R-B.; Isabel G-L.; Edith P-A.; Bernardo E-B.H.; César A-P.J.; Gerardo D-G.; Rubén R-R.; Dipeptidyl peptidase IV inhibitory activity of protein hydrolyzates from Amaranthus hypochondriacus L. Grain and their influence on postprandial glycemia in Streptozotocin-induced diabetic mice. Afr J Tradit Complement Altern Med 2015,12(1),90-98
  • Bojórquez-Velázquez E.; Velarde-Salcedo A.J.; De León-Rodríguez A.; Jimenez-Islas H.; Pérez-Torres J.L.; Herrera-Estrella A.; Espitia-Rangel E.; Barba de la Rosa A.P.; Morphological, proximal composition, and bioactive compounds characterization of wild and cultivated amaranth (Amaranthus spp.) species. J Cereal Sci 2018,83,222-228
  • Aphalo P.; Martínez E.N.; Añón M.C.; Amaranth sprouts: a potential health promoting and nutritive natural food. Int J Food Prop 2015,18(12),2688-2698
  • Sandoval-Sicairos E.S.; Milán-Noris A.K.; Luna-Vital D.A.; Milán-Carrillo J.; Montoya-Rodríguez A.; Anti-inflammatory and antioxidant effects of peptides released from germinated amaranth during in vitro simulated gastrointestinal digestion. Food Chem 2021,343,128394
  • Fritz M.; Vecchi B.; Rinaldi G.; Añón M.C.; Amaranth seed protein hydrolysates have in vivo and in vitro antihypertensive activity. Food Chem 2011,126(3),878-884
  • Lado M.B.; Burini J.; Rinaldi G.; Añón M.C.; Tironi V.A.; Effects of the dietary addition of Amaranth (Amaranthus mantegazzianus) protein isolate on antioxidant status, lipid profiles and blood pressure of rats. Plant Foods Hum Nutr 2015,70(4),371-379
  • Sabbione A.C.; Ogutu F.O.; Scilingo A.; Zhang M.; Añón M.C.; Mu T.H.; Antiproliferative effect of Amaranth proteins and peptides on HT-29 human colon tumor cell line. Plant Foods Hum Nutr 2019,74(1),107-114
  • Aluko R.E.; Monu E.; Functional and bioactive properties of quinoa seed protein hydrolysates. J Food Sci 2003,68(4),1254-1258
  • Daliri H.; Ahmadi R.; Pezeshki A.; Hamishehkar H.; Mohammadi M.; Beyrami H.; Khakbaz Heshmati M.; Ghorbani M.; Quinoa bioactive protein hydrolysate produced by pancreatin enzyme- functional and antioxidant properties. Lebensm Wiss Technol 2021,150,111853
  • Mahdavi Yekta M.; Nouri L.; Azizi M.H.; Karimi Dehkordi M.; Mohammadi M.; Jabbari M.; Rezaei M.; Mousavi Khaneghah A.; Peptide extracted from quinoa by pepsin and alcalase enzymes hydrolysis: Evaluation of the antioxidant activity. J Food Process Preserv 2020,44(10),e14773
  • Segura-Campos M.R.; Salazar-Vega I.M.; Chel-Guerrero L.A.; Betancur-Ancona D.A.; Biological potential of chia (Salvia hispanica L.) protein hydrolysates and their incorporation into functional foods. Lebensm Wiss Technol 2013,50(2),723-731
  • Orona-Tamayo D.; Valverde M.E.; Nieto-Rendón B.; Paredes-López O.; Inhibitory activity of chia (Salvia hispanica L.) protein fractions against angiotensin I-converting enzyme and antioxidant capacity. Lebensm Wiss Technol 2015,64(1),236-242
  • Aguilar-Toalá J.E.; Deering A.J.; Liceaga A.M.; New insights into the antimicrobial properties of hydrolysates and peptide fractions derived from chia seed (Salvia hispanica L.). Probiotics Antimicrob Proteins 2020,12(4),1571-1581
  • Chim-Chi Y.; Gallegos-Tintoré S.; Jiménez-Martínez C.; Dávila-Ortiz G.; Chel-Guerrero L.; Antioxidant capacity of Mexican chia (Salvia hispanica L.) protein hydrolyzates. J Food Meas Charact 2018,12(1),323-331
  • Cotabarren J.; Rosso A.M.; Tellechea M.; García-Pardo J.; Rivera J.L.; Obregón W.D.; Parisi M.G.; Adding value to the chia (Salvia hispanica L.) expeller: Production of bioactive peptides with antioxidant properties by enzymatic hydrolysis with Papain. Food Chem 2019,274,848-856
  • Martínez Leo E.E.; Segura Campos M.R.; Neuroprotective effect of peptide fractions from chia (Salvia hispanica) on HO-induced oxidative stress-mediated neuronal damage on N1E-115 cell line. Neurochem Res 2020,45(10),2278-2285
  • Coelho M.S.; Soares-Freitas R.A.M.; Arêas J.A.G.; Gandra E.A.; Salas-Mellado M.M.; Peptides from chia present antibacterial activity and inhibit cholesterol synthesis. Plant Foods Hum Nutr 2018,73(2),101-107
  • Sosa Crespo I.; Laviada Molina H.; Chel Guerrero L.; Ortiz Andrade R.; Betancur Ancona D.; [Inhibitory effect of peptide fractions derivatives from chia (Salvia hispanica) hydrolysis against α-amylase and α-glucosidase enzymes]. Nutr Hosp 2018,35(4),928-935
  • Urbizo-Reyes U.; San Martin-González M.F.; Garcia-Bravo J.; López Malo Vigil A.; Liceaga A.M.; Physicochemical characteristics of chia seed (Salvia hispanica) protein hydrolysates produced using ultrasonication followed by microwave-assisted hydrolysis. Food Hydrocoll 2019,97,105187
  • Villanueva-Lazo A.; Paz S.M.; Rodriguez-Martin N.M.; Millan F.; Carrera C.; Pedroche J.J.; Millan-Linares M.C.; Antihypertensive and antioxidant activity of chia protein techno-functional extensive hydrolysates. Foods 2021,10(10),2297
  • Wang C.; Yuan S.; Zhang W.; Ng T.; Ye X.; Buckwheat antifungal protein with biocontrol potential to inhibit fungal (Botrytis cinerea) infection of cherry tomato. J Agric Food Chem 2019,67(24),6748-6756
  • Wang F.; Yu G.; Zhang Y.; Zhang B.; Fan J.; Dipeptidyl peptidase IV inhibitory peptides derived from oat (Avena sativa L.), buckwheat (Fagopyrum esculentum), and highland barley (Hordeum vulgare trifurcatum (L.) Trofim) proteins. J Agric Food Chem 2015,63(43),9543-9549
  • Tao T.; Pan D.; Zheng Y.Y.; Ma T.; Optimization of hydrolyzed crude extract from tartary buckwheat protein and analysis of its hypoglycemic activity in vitro. IOP Conf Ser Earth Environ Sci 2019,295(3),032065
  • Yu G.; Wang F.; Zhang B.; Fan J.; In vitro inhibition of platelet aggregation by peptides derived from oat (Avena sativa L.), highland barley (Hordeum vulgare Linn. var. nudum Hook. f.), and buckwheat (Fagopyrum esculentum Moench) proteins. Food Chem 2016,194,577-586
  • Tovar-Pérez E.G.; Guerrero-Becerra L.; Lugo-Cervantes E.; Antioxidant activity of hydrolysates and peptide fractions of glutelin from cocoa (Theobroma cacao L.) seed. CYTA J Food 2017,15(4),489-496
  • Fadimu G.J.; Gill H.; Farahnaky A.; Truong T.; Investigating the impact of ultrasound pretreatment on the physicochemical, structural, and antioxidant properties of lupin protein hydrolysates. Food Bioprocess Technol 2021,14(11),2004-2019
  • Guo X.; Shang W.; Strappe P.; Zhou Z.; Blanchard C.; Peptides derived from lupin proteins confer potent protection against oxidative stress. J Sci Food Agric 2018,98(14),5225-5234
  • Montserrat-de la Paz S.; Villanueva A.; Pedroche J.; Millan F.; Martin M.E.; Millan-Linares M.C.; Antioxidant and anti-inflammatory properties of bioavailable protein hydrolysates from lupin-derived agri-waste. Biomolecules 2021,11(10),1458
  • Kusumah J.; Real Hernandez L.M.; Gonzalez de Mejia E.; Antioxidant potential of mung bean (Vigna radiata) albumin peptides produced by enzymatic hydrolysis analyzed by biochemical and in silico methods. Foods 2020,9(9),1241
  • Zhang Y.; Ding X.; Li M.; Preparation, characterization and in vitro stability of iron-chelating peptides from mung beans. Food Chem 2021,349,129101
  • Castro-Jácome T.P.; Alcántara-Quintana L.E.; Montalvo-González E.; Chacón-López A.; Kalixto-Sánchez M.A.; del Pilar Rivera M.; López-García U.M.; Tovar-Pérez E.G.; Skin-protective properties of peptide extracts produced from white sorghum grain kafirins. Ind Crops Prod 2021,167,113551