Wine Spoilage Yeasts: Control Strategy

  1. Escott, Carlos 2
  2. Loira, Iris 1
  3. Morata, Antonio 1
  4. Bañuelos, María Antonia 1
  5. Suárez-Lepe, José Antonio 1
  1. 1 Universidad Politécnica de Madrid
    info

    Universidad Politécnica de Madrid

    Madrid, España

    ROR https://ror.org/03n6nwv02

  2. 2 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Liburua:
Yeast - Industrial Applications

Argitaletxea: IntechOpen

ISBN: 9789535135999 9789535136002

Argitalpen urtea: 2017

Orrialdeak: 1-300

Mota: Liburuko kapitulua

DOI: 10.5772/INTECHOPEN.69942 GOOGLE SCHOLAR lock_openSarbide irekia editor

Laburpena

Traditionally in winemaking, sulphur dioxide (SO2) is chemically the most widely used for microflora control as antimicrobial preservative. Other tested compounds for selective yeast control are sorbic and benzoic acids. Herein, we discuss the effectiveness and the application of traditional and novel treatments and biotechnologies for chemical and biological control of wine spoilage yeasts. The versatility of the killer toxins and the antimicrobial properties of natural compounds such as carvacrol, essential oils and bioactive peptides will be considered. Some of the wine spoilage yeasts that are intended to control belong to the genera Zygosaccharomyces, Saccharomycodes and Dekkera/Brettanomyces, but also the non-Saccharomyces yeasts species dominating the first phase of fermentation (Hanseniaspora uvarum, Hansenula anomala, Metschnikowia pulcherrima, Wickerhamomyces anomalus) and some others, such as Schizosaccharomyces pombe, depending on the kind of wine to be produced.

Erreferentzia bibliografikoak

  • Fleet G. The commercial and community significance of yeasts in food and beverage production. Yeasts in Food and Beverages. Springer-Verlag, Berlin Heidelberg; 2006. pp. 1-12
  • Palpacelli V, Ciani M, Rosini G. Activity of different ‘killer’ yeasts on strains of yeast species undesirable in the food industry. FEMS Microbiology Letters. 1991;84(1):75-78
  • Rojo MC, López FA, Lerena M, Mercado L, Torres A, Combina M. Effects of pH and sugar concentration in Zygosaccharomyces rouxii growth and time for spoilage in concentrated grape juice at isothermal and non-isothermal conditions. Food Microbiology. 2014;38:143-150
  • Alonso A, Belda I, Santos A, Navascués E, Marquina D. Advances in the control of the spoilage caused by Zygosaccharomyces species on sweet wines and concentrated grape musts. Food Control. 2015;51:129-134
  • Fleet G. Spoilage yeasts. Critical Reviews in Biotechnology. 1992;12(1-2):1-44
  • Martorell P, Stratford M, Steels H, Fernández-Espinar MT, Querol A. Physiological characterization of spoilage strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments. International Journal of Food Microbiology. 2007;114(2):234-242
  • Loureiro V, Malfeito-Ferreira M. Spoilage yeasts in the wine industry. International Journal of Food Microbiology. 2003 Sep 1;86(1-2):23-50
  • Fleet GH. Yeast interactions and wine flavour. International Journal of Food Microbiology. 2003;86(1):11-22
  • Passoth V, Fredlund E, Druvefors UA, Schnurer J. Biotechnology, physiology and genetics of the yeast Pichia anomala. FEMS Yeast Research. 2006 Jan;6(1):3-13
  • Schaffrath R, Breunig KD. Genetics and molecular physiology of the yeast Kluyveromyces lactis. Fungal Genetics and Biology. 2000;30(3):173-190
  • Du Toit M, Pretorius IS. Microbial spoilage and preservation of wine: Using weapons from nature’s own arsenal—A review. South African Journal of Enology and Viticulture. 2000;21(Special Issue):74-96
  • Romano P, Suzzi G. Origin and production of acetoin during wine yeast fermentation. Applied and Environmental Microbiology. 1996 Feb;62(2):309-315
  • Akinmusire O. Fungal species associated with the spoilage of some edible fruits in Maiduguri Northern Eastern Nigeria. Advances in Environmental Biology. 2011:157-162
  • Babic I, Hilbert G, Nguyen‐The C, Guiraud J. The yeast flora of stored ready-to-use carrots and their role in spoilage. International Journal of Food Science and Technology. 1992;27(4):473-484
  • Ciani M, Fatichenti F. Killer toxin of Kluyveromyces phaffii DBVPG 6076 as a biopreservative agent to control apiculate wine yeasts. Applied Environmental Microbiology. 2001 Jul;67(7):3058-3063
  • Gyawali R, Ibrahim SA. Natural products as antimicrobial agents. Food Control. 2014;46:412-429
  • Török T, King A. Thermal inactivation kinetics of food-borne yeasts. Journal of Food Science. 1991;56(1):6-9
  • Gaze J. Microbiological aspects of thermally processed foods. Journal of Applied Microbiology. 2005;98(6):1381-1386
  • Hotchkiss J. Safety Considerations in Active Packaging. Active Food Packaging. Springer, US; 1995. pp. 238-255
  • Brody AL, Bugusu B, Han JH, Sand CK, McHugh TH. Innovative food packaging solutions. Journal of Food Science. 2008;73(8):R107–R116
  • Raybaudi-Massilia RM, Mosqueda-Melgar J, Soliva-Fortuny R, Martín-Belloso O. Control of pathogenic and spoilage microorganisms in fresh-cut fruits and fruit juices by traditional and alternative natural antimicrobials. Comprehensive Reviews in Food Science and Food Safety. 2009;8(3):157-180
  • Davidson PM, Taylor TM, Schmidt SE. Chemical Preservatives and Natural Antimicrobial Compounds. In: Food microbiology. American Society of Microbiology, Washington, DC. 2013. pp. 765-801
  • Barata A, Caldeira J, Botelheiro R, Pagliara D, Malfeito-Ferreira M, Loureiro V. Survival patterns of Dekkera bruxellensis in wines and inhibitory effect of sulphur dioxide. International Journal of Food Microbiology. 2008;121(2):201-207
  • Warth AD. Resistance of yeast species to benzoic and sorbic acids and to sulfur dioxide. Journal of Food Protection. 1985;48(7):564-569
  • Stratford M, Anslow P. Evidence that sorbic acid does not inhibit yeast as a classic ‘weak acid preservative’. Letters in Applied Microbiology. 1998;27(4):203-206
  • Rojo MC, López FA, Lerena M, Mercado L, Torres A, Combina M. Evaluation of different chemical preservatives to control Zygosaccharomyces rouxii growth in high sugar culture media. Food Control. 2015;50:349-355
  • Ough C, Crowell E. Use of sulfur dioxide in winemaking. Journal of Food Science. 1987;52(2):386-388
  • Divol B, du Toit M, Duckitt E. Surviving in the presence of sulphur dioxide: Strategies developed by wine yeasts. Applied Microbiology and Biotechnology. 2012;95(3):601-613
  • Santos MC, Nunes C, Saraiva JA, Coimbra MA. Chemical and physical methodologies for the replacement/reduction of sulfur dioxide use during winemaking: Review of their potentialities and limitations. European Food Research and Technology. 2012;234(1):1-12
  • Guerrero RF, Cantos-Villar E. Demonstrating the efficiency of sulphur dioxide replacements in wine: A parameter review. Trends in Food Science and Technology. 2015,3;42(1):27-43
  • Serpaggi V, Remize F, Recorbet G, Gaudot-Dumas E, Sequeira-Le Grand A, Alexandre H. Characterization of the “viable but nonculturable” (VBNC) state in the wine spoilage yeast Brettanomyces. Food Microbiology. 2012;30(2):438-447
  • Agnolucci M, Rea F, Sbrana C, Cristani C, Fracassetti D, Tirelli A, et al. Sulphur dioxide affects culturability and volatile phenol production by Brettanomyces/Dekkera bruxellensis. International Journal of Food Microbiology. 2010;143(1):76-80
  • Benito S, Palomero F, Morata A, Calderón F, Suárez‐Lepe J. Factors affecting the hydroxycinnamate decarboxylase/vinylphenol reductase activity of Dekkera/Brettanomyces: Application for Dekkera/Brettanomyces control in red wine making. Journal of Food Science. 2009;74(1):M15–M22
  • 27-CFR-24.246-2002 A. Code of Federal Regulations, Title 27, Chapter 1, Subchapter A, Part 24, Subpart L, Section 24.246. Materials Authorized for the Treatment of Wine and Juice. 2002. Available from: https://www.law.cornell.edu/cfr/text/27/24.246 [Accessed: 3 July 2017]
  • FAR A474-2004 A. Final Assessment Report, Application A474, Winemaking. Food Standards Australia New Zealand; 2004. Available from: http://www.foodstandards.gov.au/code/applications/pages/applicationa474winemaking/index.aspx [Accessed: 3 July 2017]
  • CR-EC 643-2006 A. Commission Regulation (EC) No 643/2006. Official Journal of the European Union, 28.4.2006, L115/6-L115/9. 27 April 2006. Available from: http://extwprlegs1.fao.org/docs/pdf/eur65203.pdf [Accessed: 3 July, 2017]
  • Ough C, Langbehn L, Stafford P. Influence of pH and ethanol on the effectiveness of dimethyl dicarbonate in controlling yeast growth in model wine systems. American Journal of Enology and Viticulture. 1978;29(1):60-62
  • Bizri JN, Wahem IA. Citric acid and antimicrobials affect microbiological stability and quality of tomato juice. Journal of Food Science. 1994;59(1):130-135
  • Bartowsky E. Bacterial spoilage of wine and approaches to minimize it. Letters in Applied Microbiology. 2009;48(2):149-156
  • Renouf V, Strehaiano P, Lonvaud-Funel A. Effectiveness of dimethyldicarbonate to prevent Brettanomyces bruxellensis growth in wine. Food Control. 2008;19(2):208-216
  • Divol B, Strehaiano P, Lonvaud-Funel A. Effectiveness of dimethyldicarbonate to stop alcoholic fermentation in wine. Food Microbiology. 2005;22(2):169-178
  • Delfini C, Gaia P, Schellino R, Strano M, Pagliara A, Ambrò S. Fermentability of grape must after inhibition with dimethyl dicarbonate (DMDC). Journal of Agriculture and Food Chemistry. 2002;50(20):5605-5611
  • Costa A, Barata A, Malfeito-Ferreira M, Loureiro V. Evaluation of the inhibitory effect of dimethyl dicarbonate (DMDC) against wine microorganisms. Food Microbiology. 2008;25(2):422-427
  • Zuehlke J, Glawe D, Edwards C. Efficacy of dimethyl dicarbonate against yeasts associated with Washington State grapes and wines. Journal of Food Processing and Preservation. 2014;39(6):1016-1026
  • Oelofse A, Pretorius I, Du Toit M. Significance of Brettanomyces and Dekkera during winemaking: A synoptic review. South African Journal of Enology and Viticulture. 2008;29(2): 128-144
  • Threlfall R, Morris J. Using dimethyldicarbonate to minimize sulfur dioxide for prevention of fermentation from excessive yeast contamination in juice and semi-sweet wine. Journal of Food Science. 2002;67(7):2758-2762
  • Resolution Oeno 6/2006. Method OIV-MA-AS313-20. Determination of sorbic, benzoic and salicylic acid content in wine by the use of high-performance liquid chromatography. Compendium of International Analysis of Methods – OIV. Available from: http://www.oiv.int/public/medias/2519/oiv-ma-as313-20.pdf [Accessed: 3 July 2017]
  • Steels H, James S, Roberts I, Stratford M. Sorbic acid resistance: The inoculum effect. Yeast. 2000;16(13):1173-1183
  • Loureiro V, Malfeito-Ferreira M. Spoilage activities of Dekkera/Brettanomyces spp. In: Blackburn C, editor. Food Spoilage Microorganisms. Cambridge, UK: Woodhead Publisher; 2006. pp. 354-398
  • Oswald TA, Edwards CG. Interactions between storage temperature and ethanol that affect growth of Brettanomyces bruxellensis in Merlot wine. American Journal of Enology and Viticulture. 2017;68:188-194. ajev. 2017.16102
  • Couto JA, Neves F, Campos F, Hogg T. Thermal inactivation of the wine spoilage yeasts Dekkera/Brettanomyces. International Journal of Food Microbiology. 2005,Oct 25;104(3):337-344
  • Zuehlke JM, Edwards CG. Impact of sulfur dioxide and temperature on culturability and viability of Brettanomyces bruxellensis in wine. Journal of Food Protection®. 2013;76(12):2024-2030
  • Wang C, Huang H, Hsu C, Yang BB. Recent advances in food processing using high hydrostatic pressure technology. Critical Reviews in Food Science and Nutrition. 2016;56(4):527-540
  • Yaldagard M, Mortazavi SA, Tabatabaie F. The principles of ultra high pressure technology and its application in food processing/preservation: A review of microbiological and quality aspects. African Journal of Biotechnology. 2008;7(16):2739-2767
  • Koutchma T, Popović V, Ros‐Polski V, Popielarz A. Effects of ultraviolet light and high‐pressure processing on quality and health‐related constituents of fresh juice products. Comprehensive Reviews in Food Science and Food Safety. 2016;15(5):844-867
  • del Árbol JT, Pulido RP, La Storia A, Burgos MJG, Lucas R, Ercolini D, et al. Microbial diversity in pitted sweet cherries (Prunus avium L.) as affected by high-hydrostatic pressure treatment. Food Research International. 2016;89:790-796
  • Pulido RP, Burgos MJG, Gálvez A, Lucas R. Changes in bacterial diversity of refrigerated mango pulp before and after treatment by high hydrostatic pressure. LWT-Food Science and Technology. 2017;78:289-295
  • Shahbaz HM, Yoo S, Seo B, Ghafoor K, Kim JU, Lee D, et al. Combination of TiO2-UV photocatalysis and high hydrostatic pressure to inactivate bacterial pathogens and yeast in commercial apple juice. Food and Bioprocess Technology. 2016;9(1):182-190
  • Martínez-Onandi N, Castioni A, San Martín E, Rivas-Cañedo A, Nuñez M, Torriani S, et al. Microbiota of high-pressure-processed Serrano ham investigated by culture-dependent and culture-independent methods. International Journal of Food Microbiology. 2017;241:298-307
  • van Wyk S, Silva FV. High pressure inactivation of Brettanomyces bruxellensis in red wine. Food Microbiology. 2017;63:199-204
  • González-Arenzana L, Sevenich R, Rauh C, López R, Knorr D, López-Alfaro I. Inactivation of Brettanomyces bruxellensis by high hydrostatic pressure technology. Food Control. 2016;59:188-195
  • Morata A, Loira I, Vejarano R, Bañuelos MA, Sanz PD, Otero L, et al. Grape processing by high hydrostatic pressure: Effect on microbial populations, phenol extraction and wine quality. Food and Bioprocess Technology. 2015;8(2):277-286
  • Milani EA, Silva FV. Nonthermal pasteurization of beer by high pressure processing: Modelling the inactivation of Saccharomyces cerevisiae ascospores in different alcohol beers. High Pressure Research. 2016;36(4):595-609
  • Turtoi M. Inactivation of Saccharomyces cerevisiae using new non-thermal technologies. A review. Romanian Biotechnological Letters. 2014;19(1):8901-8909
  • Gomez-Lopez VM, Ragaert P, Debevere J, Devlieghere F. Pulsed light for food decontamination: A review. Trends in Food Science and Technology. 2007;18(9):464-473
  • Takeshita K, Shibato J, Sameshima T, Fukunaga S, Isobe S, Arihara K, et al. Damage of yeast cells induced by pulsed light irradiation. International Journal of Food Microbiology. 2003;85(1):151-158
  • Ferrario M, Alzamora SM, Guerrero S. Inactivation kinetics of some microorganisms in apple, melon, orange and strawberry juices by high intensity light pulses. Journal of Food Engineering. 2013;118(3):302-311
  • Ferrario M, Alzamora SM, Guerrero S. Study of the inactivation of spoilage microorganisms in apple juice by pulsed light and ultrasound. Food Microbiology. 2015;46:635-642
  • Luksiene Z, Buchovec I, Viskelis P. Impact of high-power pulsed light on microbial contamination, health promoting components and shelf life of strawberries. Food Technology and Biotechnology. 2013;51(2):284
  • Ganan M, Hierro E, Hospital XF, Barroso E, Fernández M. Use of pulsed light to increase the safety of ready-to-eat cured meat products. Food Control. 2013;32(2):512-517
  • Kotnik T, Frey W, Sack M, Meglič SH, Peterka M, Miklavčič D. Electroporation-based applications in biotechnology. Trends in Biotechnology. 2015;33(8):480-488
  • Hülsheger H, Potel J, Niemann E. Electric field effects on bacteria and yeast cells. Radiation and Environmental Biophysics. 1983;22(2):149-162
  • Gášková D, Sigler K, Janderova B, Plášek J. Effect of high-voltage electric pulses on yeast cells: Factors influencing the killing efficiency. Bioelectrochemistry and Bioenergetics. 1996;39(2):195-202
  • Buckow R, Ng S, Toepfl S. Pulsed electric field processing of orange juice: A review on microbial, enzymatic, nutritional, and sensory quality and stability. Comprehensive Reviews in Food Science and Food Safety. 2013;12(5):455-467
  • Aronsson K, Rönner U, Borch E. Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae in relation to membrane permeabilization and subsequent leakage of intracellular compounds due to pulsed electric field processing. International Journal of Food Microbiology. 2005;99(1):19-32
  • Ganeva V, Galutzov B, Teissie J. Evidence that pulsed electric field treatment enhances the cell wall porosity of yeast cells. Applied Biochemistry and Biotechnology. 2014;172(3):1540-1552
  • Gómez-Rivas L, Escudero-Abarca BI, Aguilar-Uscanga MG, Hayward-Jones PM, Mendoza P, Ramírez M. Selective antimicrobial action of chitosan against spoilage yeasts in mixed culture fermentations. Journal of Industrial Microbiology and Biotechnology. 2004;31(1):16-22
  • Raafat D, Sahl H. Chitosan and its antimicrobial potential—A critical literature survey. Microbial Biotechnology. 2009;2(2):186-201
  • Roller S, Covill N. The antifungal properties of chitosan in laboratory media and apple juice. International Journal of Food Microbiology. 1999;47(1):67-77
  • Ferreira D, Moreira D, Costa EM, Silva S, Pintado MM, Couto JA. The antimicrobial action of chitosan against the wine spoilage yeast Brettanomyces/Dekkera. Journal of Chitin and Chitosan Science. 2013;1(3):240-245
  • Taillandier P, Joannis‐Cassan C, Jentzer J, Gautier S, Sieczkowski N, Granes D, et al. Effect of a fungal chitosan preparation on Brettanomyces bruxellensis, a wine contaminant. Journal of Applied Microbiology. 2015;118(1):123-131
  • Petrova B, Cartwright ZM, Edwards CG. Effectiveness of chitosan preparations against Brettanomyces bruxellensis grown in culture media and red wines. OENO One. 2016;50(1):49-56
  • Iriti M, Vitalini S, Di Tommaso G, D–AMICO S, Borgo M, Faoro F. New chitosan formulation prevents grapevine powdery mildew infection and improves polyphenol content and free radical scavenging activity of grape and wine. Australian Journal of Grape and Wine Research. 2011;17(2):263-269
  • Fajardo P, Martins J, Fuciños C, Pastrana L, Teixeira J, Vicente A. Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of Saloio cheese. Journal of Food Engineering. 2010;101(4):349-356
  • Souza JM, Caldas AL, Tohidi SD, Molina J, Souto AP, Fangueiro R, et al. Properties and controlled release of chitosan microencapsulated limonene oil. Revista Brasileira de Farmacognosia. 2014;24(6):691-698
  • Elmacı SB, Gülgör G, Tokatlı M, Erten H, İşci A, Özçelik F. Effectiveness of chitosan against wine-related microorganisms. Antonie Van Leeuwenhoek. 2015;107(3):675-686
  • Conner D, Beuchat L. Effects of essential oils from plants on growth of food spoilage yeasts. Journal of Food Science. 1984;49(2):429-434
  • Curtis O, Shetty K, Cassagnol G, Peleg M. Comparison of the inhibitory and lethal effects of synthetic versions of plant metabolites (anethole, carvacrol, eugenol, and thymol) on a food spoilage yeast (Debaromyces hansenii). Food Biotechnology. 1996;10(1):55-73
  • Burt S. Essential oils: Their antibacterial properties and potential applications in foods—A review. International Journal of Food Microbiology. 2004;94(3):223-253
  • Bennis S, Chami F, Chami N, Bouchikhi T, Remmal A. Surface alteration of Saccharomyces cerevisiae induced by thymol and eugenol. Letters in Applied Microbiology. 2004;38(6):454-458
  • Kubo I, Cespedes CL. Antifungal activity of alkanols: Inhibition of growth of spoilage yeasts. Phytochemistry Reviews. 2013;12(4):961-977
  • Sivropoulou A, Papanikolaou E, Nikolaou C, Kokkini S, Lanaras T, Arsenakis M. Antimicrobial and cytotoxic activities of Origanum essential oils. Journal of Agricultural and Food Chemistry. 1996;44(5):1202-1205
  • Chavan PS, Tupe SG. Antifungal activity and mechanism of action of carvacrol and thymol against vineyard and wine spoilage yeasts. Food Control. 2014;46:115-120
  • Rabinkov A, Miron T, Konstantinovski L, Wilchek M, Mirelman D, Weiner L. The mode of action of allicin: Trapping of radicals and interaction with thiol containing proteins. Biochimica et Biophysica Acta (BBA)-General Subjects. 1998;1379(2):233-244
  • Chang T, Jang H, Lin W, Duan P. Antifungal activities of commercial rice wine extracts of Taiwanese Allium fistulosum. Advances in Microbiology. 2016;6(07):471
  • Oommen S, Anto RJ, Srinivas G, Karunagaran D. Allicin (from garlic) induces caspase-mediated apoptosis in cancer cells. European Journal of Pharmacology. 2004;485(1):97-103
  • Lee J, Gupta S, Huang J, Jayathilaka LP, Lee B. HPLC-MTT assay: Anticancer activity of aqueous garlic extract is from allicin. Analytical Biochemistry. 2013;436(2):187-189
  • Yoshida H, Katsuzaki H, Ishikawa K, Fukuda H, Fujino T, Suzuki A. Antimicrobial activity of the thiosulfinates isolated from oil-macerated garlic extract. Bioscience, Biotechnology, and Biochemistry. 1999;63(3):591-594
  • Shadkchan Y, Shemesh E, Mirelman D, Miron T, Rabinkov A, Wilchek M, et al. Efficacy of allicin, the reactive molecule of garlic, in inhibiting Aspergillus spp. in vitro, and in a murine model of disseminated aspergillosis. Journal of Antimicrobial Chemotherapy. 2004 May;53(5):832-836
  • Ankri S, Mirelman D. Antimicrobial properties of allicin from garlic. Microbial Infections. 1999;1(2):125-129
  • Cobos R, Mateos RM, Alvarez-Perez JM, Olego MA, Sevillano S, Gonzalez-Garcia S, et al. Effectiveness of natural antifungal compounds in controlling infection by grapevine trunk disease pathogens through pruning wounds. Applied Environmental Microbiology. 2015 Sep;81(18):6474-6483
  • Davis SR. An overview of the antifungal properties of allicin and its breakdown products—The possibility of a safe and effective antifungal prophylactic. Mycoses. 2005;48(2):95-100
  • Marchese A, Barbieri R, Sanches-Silva A, Daglia M, Nabavi SF, Jafari NJ, et al. Antifungal and antibacterial activities of allicin: A review. Trends in Food Science and Technology. 2016;52:49-56
  • Chang Y, McLandsborough L, McClements DJ. Physical properties and antimicrobial efficacy of thyme oil nanoemulsions: Influence of ripening inhibitors. Journal of Agriculture and Food Chemistry. 2012;60(48):12056-12063
  • Maté J, Periago PM, Palop A. When nanoemulsified, d-limonene reduces Listeria monocytogenes heat resistance about one hundred times. Food Control. 2016;59:824-828
  • Blanco-Padilla A, Soto KM, Hernandez Iturriaga M, Mendoza S. Food antimicrobials nanocarriers. Scientific World Journal. 2014;2014:837215
  • Fogaça AC, Lorenzini DM, Kaku LM, Esteves E, Bulet P, Daffre S. Cysteine-rich antimicrobial peptides of the cattle tick Boophilus microplus: Isolation, structural characterization and tissue expression profile. Developmental & Comparative Immunology. 2004;28(3):191-200
  • Schibli DJ, Epand RF, Vogel HJ, Epand RM. Tryptophan-rich antimicrobial peptides: Comparative properties and membrane interactions. Biochemistry and Cell Biology. 2002;80(5):667-677
  • Jung HJ, Park Y, Hahm K, Lee DG. Biological activity of Tat (47-58) peptide on human pathogenic fungi. Biochemical and Biophysical Research Communications. 2006;345(1):222-228
  • Chan DI, Prenner EJ, Vogel HJ. Tryptophan-and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2006;1758(9):1184-1202
  • Zhao H, Mattila J, Holopainen JM, Kinnunen PK. Comparison of the membrane association of two antimicrobial peptides, magainin 2 and indolicidin. Biophysics Journal. 2001;81(5):2979-2991
  • Schibli DJ, Hwang PM, Vogel HJ. Structure of the antimicrobial peptide tritrpticin bound to micelles: A distinct membrane-bound peptide fold. Biochemistry. 1999;38(51):16749-16755
  • Salay LC, Procopio J, Oliveira E, Nakaie CR, Schreier S. Ion channel‐like activity of the antimicrobial peptide tritrpticin in planar lipid bilayers. FEBS Letters. 2004;565(1-3):171-175
  • Yang S, Shin SY, Kim Y, Kim Y, Hahm K, Kim JI. Conformation-dependent antibiotic activity of tritrpticin, a cathelicidin-derived antimicrobial peptide. Biochemical and Biophysical Research Communications. 2002;296(5):1044-1050
  • Nguyen LT, de Boer L, Zaat SA, Vogel HJ. Investigating the cationic side chains of the antimicrobial peptide tritrpticin: Hydrogen bonding properties govern its membrane-disruptive activities. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2011;1808(9):2297-2303
  • Tang Y, Shi Y, Zhao W, Hao G, Le G. Discovery of a novel antimicrobial peptide using membrane binding-based approach. Food Control. 2009;20(2):149-156
  • Tomie T, Ishibashi J, Furukawa S, Kobayashi S, Sawahata R, Asaoka A, et al. Scarabaecin, a novel cysteine-containing antifungal peptide from the rhinoceros beetle, Oryctes rhinoceros. Biochemical and Biophysical Research Communications.2003;307(2):261-266
  • Yang S, Shin SY, Lee CW, Kim Y, Hahm K, Kim JI. Selective cytotoxicity following Arg‐to‐Lys substitution in tritrpticin adopting a unique amphipathic turn structure. FEBS Letters. 2003;540(1-3):229-233
  • Subbalakshmi C, Sitaram N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiology Letters. 1998 Mar 1;160(1):91-96
  • Falla TJ, Karunaratne DN, Hancock RE. Mode of action of the antimicrobial peptide indolicidin. Journal of Biological Chemistry. 1996;271(32):19298-19303
  • Ladokhin AS, Selsted ME, White SH. Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids. Biophysics Journal. 1997;72(2):794-805
  • Rozek A, Friedrich CL, Hancock RE. Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry. 2000;39(51):15765-15774
  • Friedrich CL, Rozek A, Patrzykat A, Hancock RE. Structure and mechanism of action of an indolicidin peptide derivative with improved activity against gram-positive bacteria. Journal of Biological Chemistry. 2001 Jun 29;276(26):24015-24022
  • Marchand C, Krajewski K, Lee HF, Antony S, Johnson AA, Amin R, et al. Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites. Nucleic Acids Research. 2006;34(18):5157-5165
  • Lee DG, Kim HK, Am Kim S, Park Y, Park S, Jang S, et al. Fungicidal effect of indolicidin and its interaction with phospholipid membranes. Biochemical and Biophysical Research Communications. 2003;305(2):305-310
  • Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N‐terminal region of bovine lactoferrin. Journal of Applied Bacteriology. 1992;73(6):472-479
  • Vogel HJ, Schibli DJ, Jing W, Lohmeier-Vogel EM, Epand RF, Epand RM. Towards a structure-function analysis of bovine lactoferricin and related tryptophan-and arginine-containing peptides. Biochemistry and Cell Biology. 2002;80(1):49-63
  • Enrique M, Marcos JF, Yuste M, Martínez M, Vallés S, Manzanares P. Inhibition of the wine spoilage yeast Dekkera bruxellensis by bovine lactoferrin-derived peptides. International Journal of Food Microbiology. 2008;127(3):229-234
  • Enrique M, Marcos JF, Yuste M, Martínez M, Vallés S, Manzanares P. Antimicrobial action of synthetic peptides towards wine spoilage yeasts. International Journal of Food Microbiology. 2007;118(3):318-325
  • Frank JF. Milk and Dairy Products. Food Microbiology: Fundamentals and Frontiers. 3rd ed. American Society of Microbiology, Washington, DC. 2007. pp. 141-155
  • Duan J, Park S, Daeschel M, Zhao Y. Antimicrobial chitosan‐lysozyme (CL) films and coatings for enhancing microbial safety of mozzarella cheese. Journal of Food Science. 2007;72(9):M355–M362
  • Ryge T, Doisy X, Ifrah D, Olsen J, Hansen P. New indolicidin analogues with potent antibacterial activity. The Journal of Peptide Research. 2004;64(5):171-185
  • Benincasa M, Scocchi M, Pacor S, Tossi A, Nobili D, Basaglia G, et al. Fungicidal activity of five cathelicidin peptides against clinically isolated yeasts. Journal of Antimicrobial Chemotherapy. 2006 Nov;58(5):950-959
  • Sader HS, Fedler KA, Rennie RP, Stevens S, Jones RN. Omiganan pentahydrochloride (MBI 226), a topical 12-amino-acid cationic peptide: Spectrum of antimicrobial activity and measurements of bactericidal activity. Antimicrobial Agents and Chemotherapy. 2004 Aug;48(8):3112-3118
  • Krajewski K, Marchand C, Long Y, Pommier Y, Roller PP. Synthesis and HIV-1 integrase inhibitory activity of dimeric and tetrameric analogs of indolicidin. Bioorganic & Medicinal Chemistry Letters. 2004;14(22):5595-5598
  • Vorland LH, Ulvatne H, Andersen J, Haukland HH, Rekdal Ø, Svendsen JS, et al. Lactoferricin of bovine origin is more active than lactoferricins of human, murine and caprine origin. Scandinavian Journal of Infectious Diseases. 1998;30(5):513-517
  • Bussey H. K1 killer toxin, a pore‐forming protein from yeast. Molecular Microbiology. 1991;5(10):2339-2343
  • Villalba ML, Sáez JS, del Monaco S, Lopes CA, Sangorrín MP. TdKT, a new killer toxin produced by Torulaspora delbrueckii effective against wine spoilage yeasts. International Journal of Food Microbiology. 2016;217:94-100.
  • Oro L, Ciani M, Bizzaro D, Comitini F. Evaluation of damage induced by Kwkt and Pikt zymocins against Brettanomyces/Dekkera spoilage yeast, as compared to sulphur dioxide. Journal of Applied Microbiology. 2016;121:207-214.
  • Comitini F, Di Pietro N, Zacchi L, Mannazzu I, Ciani M. Kluyveromyces phaffii killer toxin active against wine spoilage yeasts: Purification and characterization. Microbiology. 2004;150(8):2535-2541
  • Oro L, Zara S, Fancellu F, Mannazzu I, Budroni M, Ciani M, et al. TpBGL2 codes for a Tetrapisispora phaffii killer toxin active against wine spoilage yeasts. FEMS Yeast Research. 2014 May;14(3):464-471
  • Anonymous N. Tetrapisispora phaffii. 2011. Available from: https://www.ncbi.nlm.nih.gov/genome/?term=Tetrapisispora+phaffii [Accessed: July 3, 2017]
  • Maqueda M, Zamora E, Alvarez ML, Ramirez M. Characterization, ecological distribution, and population dynamics of Saccharomyces sensu stricto killer yeasts in the spontaneous grape must fermentations of southwestern Spain. Applied and Environmental Microbiology. 2012 Feb;78(3):735-743
  • Marquina D, Santos A, Peinado J. Biology of killer yeasts. International Microbiology. 2002;5(2):65-71
  • Enrique M, Ibáñez A, Marcos J, Yuste M, Martinez M, Vallés S, et al. β‐glucanases as a tool for the control of wine spoilage yeasts. Journal of Food Science. 2010;75(1):M41–M45
  • Mehlomakulu NN, Setati ME, Divol B. Characterization of novel killer toxins secreted by wine-related non-Saccharomyces yeasts and their action on Brettanomyces spp. International Journal of Food Microbiology. 2014;188:83-91
  • Santos A, Navascués E, Bravo E, Marquina D. Ustilago maydis killer toxin as a new tool for the biocontrol of the wine spoilage yeast Brettanomyces bruxellensis. International Journal of Food Microbiology. 2011;145(1):147-154
  • García M, Esteve-Zarzoso B, Arroyo T. Non-Saccharomyces yeasts: Biotechnological role for wine production. In Grape and Wine Biotechnology. InTech. 2016
  • Longin C, Petitgonnet C, Guilloux-Benatier M, Rousseaux S, Alexandre H. Application of flow cytometry to wine microorganisms. Food Microbiology. 2017April;62:221-231
  • Malacrinò P, Zapparoli G, Torriani S, Dellaglio F. Rapid detection of viable yeasts and bacteria in wine by flow cytometry. Journal of Microbiology Methods. 2001;45(2):127-134
  • Veal D, Deere D, Ferrari B, Piper J, Attfield P. Fluorescence staining and flow cytometry for monitoring microbial cells. Journal of Immunological Methods. 2000;243(1):191-210
  • Walker GM. Yeasts. Desk Encyclopedia of Microbiology. 2nd ed. London: Elsevier/Academic Press; 2009
  • Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA. Plant pathogen nanodiagnostic techniques: Forthcoming changes? Biotechnology & Biotechnological Equipment. 2014;28(5):775-785
  • Lim DV, Simpson JM, Kearns EA, Kramer MF. Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clinical Microbiology Reviews. 2005 Oct;18(4):583-607
  • Goddard G, Martin JC, Naivar M, Goodwin PM, Graves SW, Habbersett R, et al. Single particle high resolution spectral analysis flow cytometry. Cytometry Part A. 2006;69(8):842-851
  • Watson DA, Gaskill DF, Brown LO, Doorn SK, Nolan JP. Spectral measurements of large particles by flow cytometry. Cytometry Part A. 2009;75(5):460-464